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Modeling of Fish Disease Dynamics: A New Approach to an Old Problem 
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Abstract

In the past, the focus of fish disease research was on various aspects of fish pathogens (biochemical, serological,
virulence etc.) rather than the disease itself.  Therefore, vast amounts of data are available on the responses of these
pathogens to environmental and host related factors.  Modeling of these accumulated data could be employed to understand
the relative importance of the factors influencing the spread of disease.  In particular, the data obtained from intensive
aquaculture systems could be robust in applying modeling due to fewer assumptions involved.  Each animal in a pond
situation is exposed to the same conditions.  Therefore, the chance of coming into contact with an infectious agent or animal
is the same for each individual sharing the same pond. Thus, nonlinear relationships between various factors effecting disease
outcome can be evaluated more efficiently, and realistic predictions can be obtained.

In this paper, it was intended to review knowledge on basic modeling concepts of fish disease dynamics.
Accomplishing this goal would provide insight into the relative importance of parameters playing a major role in disease
outbreaks.
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Introduction

The foundations of mathematical modeling of
human and mammalian disease epidemics were first
established by Kermarck and McKendrick (1927, 
1932, 1933). Later, the extensive reviews of Anderson 
and May (1978), May and Anderson (1979), and 
Anderson (1982) contributed to the subject of disease
dynamics opening new discussions for concepts,
critical threshold, basic reproductive ratio,
transmission coefficient, etc.

The importance of mathematical models in
disease epidemics has been discussed extensively by
many researchers (Bradley, 1982; Anderson and May,
1991 and Heesterbeek and Roberts, 1995). 
Heesterbeek and Roberts (1995) summarized their
usefulness and weaknesses. They reported four
important and “justified” aspects of mathematical
models in disease epidemics.

First of all, mathematical models are useful in 
providing insight into the relative importance of
factors influencing spread, and also improving our
understanding of the relationship between
mechanisms that operate on the level of the individual
and the resulting effects on population. Second, these
models should be formulated with precision, which is
accomplished by considering an underlying 
hypothesis. This type of precise approach may reveal
other underlying factors, if any, which may have been
overlooked or not considered due to complexity of the
system e.g. the critical threshold concept. Third,
clarification is essential in determining the

parameters, which are critical in their influence on 
dynamic behaviour. This approach may lead to the
discovery of key parameters whose numerical (range 
of) values may still be unknown. Finally, these
models are widely used in “thought experiments“.
Sometimes actual experiments are impossible to carry 
out because of practical, economical or ethical 
reasons. For example, what would happen if the total
cases of HIV cases were double, instead of what it is
today? Experimentally, it is impossible to study due to
ethical reasons, but possible with modeling techniques
using retrospective data.

There are numerous studies carried out on 
different aspects of microparasitic fish pathogens 
(viruses, bacteria and protozoans), which are 
characterized by small size, short generation times,
and extremely high rates of direct reproduction within
the host. They usually induce immunity to reinfection
in those hosts that survive initial infection (Mimms,
1977). Moreover, horizontal (fish to fish) and/or
vertical transmission (parent to progeny) have been 
demonstrated for many fish diseases. However,
quantificative mechanism and the efficiency of
disease transmission have long been neglected in fish
diseases.

In recent years, only a few studies emerged in 
this area of fish diseases. The disease dynamics of
infectious pancreatic virus using rainbow trout were
determined by Bebak (1996). However, the study was 
limited in terms of data collected due to the study
design. Special attention needs to be given to the
design of the experiments in order to measure targeted
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parameters under the conditions provided, since a 
complex system in population level is targeted to
study.

The study of the population dynamics of
Ichthyophthirius multifiliis in black mollies, an
aquarium variety of Poecilia latipinna (Lesueur), can 
be considered another significant study in terms of
determining density dependency (McCallum, 1982, 
1985). In another study, Ögüt (2001) evaluated
modeling of Aeromonas salmonicida and infectious
haematopoietic necrosis virus (IHNV) epizootics.
Density dependence of spread in the both pathogens
was also examined extensively.

In short, considering the vast amount of data
available about various aspects of fish pathogens,
potentials of disease dynamics and epidemiological
models should be explored. Since these types of
studies focus on diseases rather than pathogen, the
information is invaluable in terms of understanding
and controlling disease. In the following sections,
general information about disease dynamics,
components of population under an epidemic, and
parameters governing an epidemic will be presented.

Modeling of Disease Dynamics 

Components of epidemiological models in fish
diseases

As mentioned above, there are three subsets of a 
population with reference to disease status. These 

were described by Watman (1974) as; the susceptible
class (S), the infective class (I), and the removed class 
(R). The susceptible class (S), are those individuals
who are not infective, but who are capable of
contracting the disease and becoming infective. The 
infective class (I), are those individuals who are 
infected with pathogen and capable of transmitting the 
disease to others. The removed class (R), are those 
individuals who have had the disease and died, or had
the disease and recovered, and/or become
permanently immune, and/or been isolated from the
susceptible until recovery and permanent immunity
occur.

In a population, the spread of an infectious
disease follows the SIR (Susceptible->Infected-
>Removed) dynamics model and the analysis of this
process has been carried out extensively in humans
and animals (Anderson and May, 1978; Giesecko,
1994; Cairns, 1995) (Figure 1).

Deterministic models 

It is assumed that in directly transmitted
diseases, the dynamics proceed according to the mass
action theory, namely that the net rate of hosts
becoming infected is the product of density of S
animals times the density of I animals. Thus, the
number of successful contacts made between S and I 
(infectious) individuals determines the magnitude of
the disease outcome.

A second assumption is that there is a certain
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Figure 1.  Disease dynamics of a population during the course of an epidemic.  b= natural mortality, ß =  Transmission
coefficient,  = disease related mortality, v = recovery rate , a = birth rate  (Modified from Anderson and May, 1979). 
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proportion of the population (N), which are S and the
remaining I. Per unit time, a proportion of I animals
make ßI potentially infective contacts. Therefore, the 
number of new cases arising per unit time;

SI   (1) 

were ß is the transmission coefficient. 
The following equations describe the

deterministic models, which involve constant values
for parameters. The number of individuals in classes
S, I, and R are denoted by St, It and Rt, respectively at
time t. At time t, the following set of equations are
obtained

dS

dt
S0 ( bSt StIt vRt )  (2) 

dI

dt
S

t
I

t
( b v)I

t
 (3) 

dR

dt
vIt bRt   (4) 

were ß, ,  and b are the transmission
coefficient, disease related mortality rate of infected
animals, removal rate, and the natural mortality rate.
Using these equations the epidemic can be 

demonstrated schematically as shown in Figure 2. 
In order to construct the models above, there are three
assumptions; a) Every individual in the population has 
the same chance of coming into contact with an
infectious individual or agent; b) Animals recover
from infections as a rate ( ) after which they are 
immune to further infection for some period of time;
c) N is closed. That is, the time scale of the epidemic
process of transmission and recovery is much shorter
than the time scale on which the population size is
changed due to natural births and deaths.

Transmission coefficient (ß) 

Transmission of a pathogen between hosts might
occur directly or indirectly in fish diseases. 
Transmission type might be either horizontal (fish to
fish, by feces, injuries or ingestion of bacteria) such as 
enteric redmouth disease, caused by Yersinia ruckeri
(Bullock and Snieszko, 1975), vibriosis (Anderson
and Conroy, 1970), or both vertical and horizontal
such as bacterial kidney disease (Evelyn et. al., 1986)
and the infectious pancreatic necrosis virus which is
also transmitted via eggs or sperm to progeny
(Mulcahy and Pascho, 1984). The life cycle of
macroparasites often involves one or more
intermediate hosts before a major disease epidemic
resulting in mortalities such as Myxobolus cerebralis,
the causative agent of “whirling disease”. Its life cycle 
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Figure 2.  Development of an epidemic during a short (epidemic) time period.  Initial values of corresponding parameters are:
population (N) = 2,000 individuals, susceptible (S) = 2000 individuals, infected (I) = 1 individuals day-1, disease related
mortality rate ( ) = 0.5 infecteds day-1, natural mortality rate (b) = 0.001, transmission coefficient (ß) = 0.0015
(individuals*day)-1.
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involves tubificid worms, Tubifex tubifex, in the
development of the infective stage (Wolf and Markiw,
1985).

As described in Anderson (1982), ß is
determined by two factors; i) the frequency of
contacts made which is directly related to the density
of susceptible animals, and ii) the likelihood that a
contact results in pathogen transmission. In fish
culture conditions, all of the fish are exposed to the
same environmental conditions. Since it is a closed
environment, making an assumption on contact rate,
that every fish has the same chance of coming into a 
contact with an infectious fish and/or an infectious
agent in the water column is more than an
assumption. It is actually a reality. However, the
estimation of ß is somewhat confusing to most.
Therefore, the calculation of  is demonstrated in
Table 1 below

Critical threshold density (NT)

There is a threshold density below which disease
cannot persist. Kermarck and McKendrick (1927) first
reported the concept of threshold density. The critical
threshold density is determined by the following
relationship:

N
T

( b v)
(5)

For a disease outbreak to occur there should be a 
certain number of susceptible individuals in the
population, higher than NT (i. e., S> NT) (Dietz, 1974;
Anderson and May, 1986; Nåsel, 1995). NT values for
directly transmitted microparasites, such as viral and
bacterial pathogens, which are of high pathogenicity
and/or induce rapid recovery and lasting immunity,
are quite high. For directly transmitted
macroparasites, NT is low due to the production of
large numbers of macroparasites from individual
hosts, and the fact that parasites often have long
infective stages, which clearly indicates dependence 
of net rate of infected hosts on a certain critical
density. The number of I (infected) will not increase

unless N>NT (Anderson and May, 1986).
Density dependence in host-parasitoid systems

has been studied extensively by various researchers 
(May et. al., 1981). With the exception of sexually
transmitted diseases (Yorke et al., 1978), the
requirement of a certain number of individuals for a 
disease epidemic is true for virtually all diseases
(Anderson and May, 1978).

Basic reproductive rate (R0)

The basic reproductive rate (R0), is the most
crucial component of the disease dynamics modeling
process. R0 is the mean number of animals directly
infected by an infectious case during the animals’
entire infectious period after entering a totally
susceptible population (McDonald, 1957; Anderson,
1982; Anderson and May, 1986; Giesecko, 1994). R0

is determined by factors, which are specific to the 
disease agent (its virulence), the host (the level of
susceptibility, which determines levels of latent
period-the time required for an epidemic to occur), 
and environmental factors such as host density and
behavior (Anderson, 1982).

The measurement of R0 is essential in the
determination of the spread of the disease, since it is 
the measure of the disease invasion in the population
(Heesterbeek and Roberts, 1995). It determines
whether an invasion will emerge after introducing the 
infected individual (s) into a totally susceptible
population.

R0 could take one of three possible values as 
shown below:

R0 < 1 Disease will disappear over time.
R0 = 1 Disease will be endemic, and

persistent with no large scale epidemic occurring.
R0 > 1 There will be an epidemic with

elevated levels of disease related mortality in the
population.

Because of the difficulty obtaining the 
transmission coefficient, which is acted upon by
numerous factors, obtaining the “actual” value for R0

Table 1. Calculation of the transmission coefficient ( ), disease related mortality rate ( ) and natural mortality using various 
classes of the population during the infection process.

Time
(days)

S(*) I(**) R(***) Incidence Disease
related

Mortality

Natural
Mortality

0 S0 I0 0 0 0 0 0 0 0
1 S1 I1=(I0+X1)- R1 M1+ N1 X1= I1- I0 X1/( S0 + I0) M1 N1 M1/ I0 N1/(S0+ I0)
2 S2 I2=(I1+X2)- R 2 M2+ N2 X2= I2- I1 X2/( S1 + I1) M2 N2 M2/ I1 N1/(S1+ I1)
3 S3 I3=(I2+X3)- R 3 M3+ N3 X3= I3- I2 X3/( S2 + I2) M3 N3 M3/ I2 N1/(S1+ I1)
4 S4 I4=(I3+X4)- R 4 M4+ N4 X4= I4- I3 X4/( S3 + I3) M4 N4 M4/ I3 N1/(S1+ I1)
5 S5 I5=(I4+X4)- R 5 M5+ N5 X5= I5- I4 X5/( S4 + I4) M5 N5 M4/ I4 N1/(S1+ I1)

(*) = S, number of susceptible, (**) = I, number of infected, (***) = R, number of dead. (Ögüt 2001)
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is difficult in the nature. In modeling studies, only the
factors that have proven to affect the outcome of a
disease outbreak should be included to get the best
estimate of the disease process, but this is also a 
difficult task. This is so, because under different
environmental and physiological factors, different
transmission coefficient values may be obtained.

R0 can be estimated using the formula below: 

R0

S

NT

  (6) 

Therefore, substituting equation 6 for NT in
equation 5 yields:

R0

N

( b )
(7)

Discussion and Conclusions 

When comparing to other types of wildlife
modeling applications that are becoming popular in
recent years, the modeling of fish disease dynamics
offers potential benefits. The two fundamental
assumptions are homogeneous mixing, and having a 
closed population that make models robust in terms of

predictive capabilities. Therefore, it is usually easier
to pinpoint what direction the health status of the fish
is going under conditions provided. In the wildlife 
situations, variables related to the system are difficult
to determine and measure due to spatiality. When
considering linear and non-linear synergic and 
antagonistic effects, systems are more complex to
understand. However, in pond and cage culture
situations, environment is homogenous for each 
individual sharing the same environment.

Disease epidemic is the result of the complex
combination of environmental, host and pathogen
related factors. Therefore, environmental
(temperature, oxygen, pollutions), host (species, age, 
density, immunity), or pathogen related factors
(virulence, strain) could be manipulated to control
diseases. It is a fact that the system is very complex,
however, not all parameters have the same amount of
effect on the outcome of the disease (Figure 3). Some
parameters playing a role in disease dynamics could
be “key” factors. Adjusting just those key factors 
could make significant improvement in the system in
terms of decreasing loses or prevalence. 

Modeling disease dynamics totally focuses on
disease by estimating R0 and NT values and observes 
changes on these parameters. Any significant decrease
in these values indicates effectiveness of a control 
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Figure 3. Interactions of different parameters in disease outbreaks of wild fish populations modified from Wobeser (1994).
(Various levels of effects of different factors on disease outcome are represented with varying levels of bold lines). 
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measure, which could be a drug treatment or
vaccination. Here, controlling the disease means
pulling R0 below unity. Therefore, there may not be 
any need to vaccinate the whole population but just
enough proportion to draw R0 below unity. This will 
decrease cost and effort of controlling the disease.

Every disease would have its own R0 value.
However, as mentioned above, the combination of
parameter values for ß,  and  would also be 
different depending on pathogenic agent, host, and
environment. For example, in the experiments carried 
out by Ögüt (2001), it took five days to observe the
first disease related mortality after challenging with
Aeromonas salmonicida, whereas some other diseases 
such as bacterial kidney disease (BKD) caused by 
Renibacterium salmoninarum, take about 30-35 days
first mortality (Wood, 1974).

Moreover, some diseases can have chronic,
acute, or per-acute stages.

Though not studied, we can comfortable assume
that the R0 values for different forms of the same
disease is different due to host, pathogen, or
environmental factors which all are summarized
under the coefficient ß. Take the example in Figure 1,
different ß values would produce a different scenario
of the prevalence on a time scale (Figure 4). There are
two points to consider from this demonstration. The 
first point is that were ß values are small, infection is 
widespread on a time scale similar to chronic 
infections. Secondly, the day to peak prevalence is

delayed in epizootics with smaller ß values. Note that
smaller ß means smaller R0. In attempts to control any
disease, smaller ß values would help in providing
more time for a therapeutic to work. For example,
antibiotic treatments need about 12 days to work
efficiently. Therefore, any time in terms of days
decreases losses significantly.

Density as a key factor 

In fish, the disease epizootics density can have
effects on furunculosis epizootic in two ways (Ögüt,
2001). First, as fish density increase, the probability
of any susceptible individual making successful
contact with an infectious individual or infectious
agent in the same population increases (Anderson and 
May, 1978; Mollision, 1995, de Jong et al., 1995). A
single infectious individual can shed >100 colony
forming units (c.f.u.) of A. salmonicida /mL per day
and infect 3 additional fish per day, within 3 days, 9
fish would be infected and shed about 1,000 cfu A.

salmonicida/mL (Ögüt, 2001). If fewer fish were
present, fewer would become infected and fewer
bacteria would be released into the water. Secondly,
various researchers have reported decreased resistance 
of stressed fish to furunculosis (Snieszko, 1973;
Pickering and Duston, 1983). Thus, the stress
generated from high loading densities may contribute
substantially to an increase in the severity of disease. 
However, researchers largely ignore the contribution
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(individuals*day)-1).  Equations 2, 3 and 4 were used to generate the chart.
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of high loading densities to the disease, which is
mostly due to the designing complexity of the
experiments. That is why the information on the
effects of loading densities to the disease outbreaks is 
mostly observational.

In brief, the large amounts of data have been
accumulated on various pathogens of fish. For
example, a tremendous amount of information on A. 

salmonicida is available in the literature. However, as 
Smith (1997) stated, “ the list of things that we do not
know about furunculosis is long, embarrassing and
includes many issues of fundamental, practical, and
theoretical importance”. The main reason for this gap
is that the disease itself has not been in focus but
pathogen. Modeling is one approach studying disease
itself. It is becoming more popular in other animal
diseases, due to fewer assumptions involved; it offers 
more benefit for fish diseases.
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