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Abstract 
 

In this study, Schizochytrium limacinum PA-968 and Crypthecodinium cohnii CCMP-316 
were produced in the media including apple (AJ) and grape juices (GJ), which contain 
carbon sources that are alternatives to standard carbon containing media (SM). The S. 
limacinum biomass productions were 9.52±0.08 g L-1 (AJ), 8.70± 0.05 g L-1 (GJ), and 
8.58±0.02 g L-1 (SM). C. cohnii produced biomass as 3.45±0.06 g L-1 (GJ), 1.52±0.04 g L-1 
(AJ), and 1.35±0.02 g L-1 (SM). The fruit juice-based media enhanced biomass 
production. It was observed that the lipid production of S. limacinum increased by 
17.6% in the medium with apple juice (2.54±0.02 g L-1), while this increase was 65.3% 
in the grape juice-based medium (3.57±0.02 g L-1). The addition of apple juice caused 
an increase in the lipid amount 1.9 times higher (0.23±0.02 g L-1), while grape juice 
induced 5.3 times more lipid production in C. cohnii culture (0.50±0.03 g L-1). The study 
emphasized that these wastes or by-products can be considered as sustainable and 
financially supportive solutions to be alternatives to carbon sources in production with 
S. limacinum and C. cohnii cultures.  

 

Introduction 
 

Microalgae have existed for billions of years and 
have been consumed as nutrients by humans worldwide 
(Gantar & Svirčev, 2008). These microorganisms play a 
crucial role in the global food chain while contributing to 
the sustainability of life (Gurlek et al., 2019; Molino et 
al., 2020). Microalgae can grow rapidly with high 
efficiency for biomass production while utilizing a low 
amount of water in the cultivation area. Due to these 
properties, they are considered as more ideal sources 
for biocompounds compared to macroalgae and plants 
(Suparmaniam et al., 2019; Yarkent & Öncel, 2023). 
Microalgae naturally synthesize valuable compounds 
such as carbohydrates, lipids, proteins, pigments, 
minerals, and others (Fernández et al., 2021; Tokgöz et 
al., 2023). The need for sustainable sources has induced 
us to put more effort into underscoring the capacity of 

microalgae to be included in unrealized applications. 
Research has proven that more than 75% of microalgal 
products can be evaluated as ingredients in food, 
nutraceuticals, and pharmaceutical products (Béligon et 
al., 2016; Guschina & Harwood, 2013; Pulz & Gross, 
2004; Torres-Tiji et al., 2020). The increase in awareness 
among consumers about healthy eating and their 
attention to natural products led to an enhancement in 
demand for these products (Gouveia et al., 2008; 
Yarkent et al., 2020). The global market value of 
microalgae products was 33 billion $ in 2017, and it is 
expected that this value will reach 53 billion $ in 2026. 
Microalgal lipids in particular have gained global 
attention from the renewable energy industry in 
addition to the biopharmaceutical and nutraceutical 
industries (Calder & Yaqoob, 2009; Mittal & Ghosh, 
2023; Yarkent & Oncel, 2022). 
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Microalgae can grow autotrophically, 
heterotrophically, and mixotrophically. In autotrophic 
cultivation, microalgae absorb energy from sunlight or 
artificial light sources and produce organic metabolites 
through photosynthesis (Chew et al., 2018). Some 
microalgae species can consume organic carbon 
substrates as carbon sources to gain energy and grow 
heterotrophically in dark conditions (Cheirsilp & Torpee, 
2012). That allows for the establishment of biomass 
production in high concentrations, as these microalgae 
do not require a light source and there is no self-shading 
issue between the cells (Fernández et al., 2021). Also, 
the energy consumption caused by the illumination 
system causes a rise in overall production costs, which 
limits scaling-up the production platform. Thus, the 
cultivation of heterotrophic cultures increases the 
possibility of microalgae production on a commercial 
scale (Yilmaz et al., 2023; Yin et al., 2020). Additionally, 
their high growth rate and high lipid concentration make 
them proper creatures for lipid production (Chew et al., 
2018). In heterotrophic microalgae production, the 
carbon content of the medium has an impact on 
biomass production and the biochemical composition of 
biomass (Brennan & Owende, 2010). Among carbon 
sources, glucose, fructose, and glycerol are the most 
preferred carbon sources (Verma et al., 2019). These 
carbons are utilized and formed lipids. There are two 
important stages for lipid biosynthesis. The first one is 
the acetyl-CoA production phase, while the second is 
the conversion of acetyl-CoA into lipids. Acetyl-CoA 
formed in mitochondria is converted to palmitic acid via 
lipogenesis (Ren et al., 2009). After the lipogenesis 
stage, palmitic acid is converted into unsaturated fatty 
acids or polyunsaturated fatty acids (PUFAs) by 
desaturases and elongases (Béligon et al., 2016). 
Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid 
(DHA) are polyunsaturated fatty acids synthesized from 
α-linolenic acid formed at this stage (Adarme-Vega et 
al., 2012; Ratledge, 2004, 2008). EPA and DHA have 
gained attention because they cannot be produced in 
the human and animal bodies and therefore, they must 
be supplied externally through nutrition (Yen et al., 
2013). This situation reveals a demand for lipid 
production through natural, sustainable and renewable 
approaches and that caused an increase in experiments 
on understanding the lipid production capacity of 
microalgae species.  

As heterotrophic microalgae consume organic 
carbon sources, the cost of medium constitutes a huge 
part of production costs (80%); therefore, cheaper 
carbon sources should be used as alternatives to costly 
ones. On the other hand, nitrogen is required at the 
initial stage of fermentation, where cell growth and 
development occur through the synthesis of amino acids 
and proteins (Perez-Garcia et al., 2011). Industrial 
wastes and by-products appear as complex nitrogen 
sources in lipid production from microalgae and the 
studies have proven that these mixtures have a high 
potential to be utilized in microalgal productions (Perez-

Garcia et al., 2011; Yadavalli et al., 2014; Yokochi et al., 
1998). Therefore, it may be a great strategy to obtain the 
required nutrient sources from a production platform 
created through the biorefinery approach. For example, 
corn steep liquor, whey, molasses, wheat straw, liquid 
waste from the brewing and potato industries, sweet 
sorghum juice, food waste, and industrial waste can be 
utilized as carbon sources (Abdel-Wahab et al., 2021; Chi 
et al., 2007; Liang et al., 2010; Patil & Gogate, 2015; 
Quilodrán et al., 2009; Unagul et al., 2007). Then, the 
biomass of microalgae can be considered as a potential 
candidate for biorefinery applications due to their 
biocompounds, which can be involved in a wide range of 
production systems such as pharmaceutical, 
nutraceutical, and biodiesel applications (Gürlek, et al., 
2020a; Jacob-Lopes et al., 2015; Senturk, 2024; Yarkent 
et al., 2021; Yarkent et al., 2024). 

In Türkiye, the fruit production and processing 
industry is one of the most important agricultural 
sectors. According to the report published in Statista, 
Türkiye has increased its capacity for fruit production 
each year and ranked 4th in the world market with 25.68 
million tons of fruit produced in 2022 (Statista, 2022). 
The amount of fruit processed into fruit juice is over 
1000 tons annually (FAO, 2019). As the amount of 
processed fruit increases, the amount of these wastes 
containing organic compounds prone to microbial 
degradation also increases and becomes a growing 
problem. Therefore, the utilization of wastes obtained 
from the fruit juice industry is crucial for creating a 
process through economic, sustainable, and eco-
friendly approaches. The fruit pulp components, which 
constitute 25–35% of fruits, have high amounts of 
carbon, minerals, proteins, organic acids, and vitamins 
(Sülük et al., 2018). Both the high nutritional value of 
fruit pulp and the possibility of recycling it, have 
revealed the opportunity of using these natural 
compounds as nutrient sources in microbial production. 
Pulps or by-products, which are derived from fruit juice 
production, have a great untapped potential as 
substrates for supporting microalgae production with 
their high nutritional value. 

The current study aims to examine the potential of 
fruit-juice based media as an alternative to high-cost 
carbon sources in microalgae production (Figure 1). 
Schizochytrium limacinum PA-968 and Crypthecodinium 
cohnii CCMP-316 were produced heterotrophically in 
apple and grape juices, which represent fruit juice 
industry wastes. Fruit juices were added to the carbon 
free standard media in appropriate quantities to 
maintain the C/N ratio present in the standard media. 
Since C/N ratio is one of the main factors in microalgae 
production, especially for lipid production, the 
maintenance of this ratio is centred at the heart of the 
study. Therefore, based on this principle, the main 
objective is to observe the effects of the determined 
amounts of fruit juice on the cultures. Each culture in 
juice-based medium and its standard medium was 
compared with each other to represent the effect of 
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juice-based medium on biomass production and lipid 
accumulation. The results proved that the utilization of 
wastes or by-products obtained from industrial fruit 
juice production can be a sustainable, renewable, and 
beneficial strategy in terms of evaluating waste as a 
substrate and decreasing overall cost in microalgae 
production while growing microalgae with valuable lipid 
components that have gained great attention from 
renewable energy, biopharmaceutical, and 
nutraceutical industries. This is a preliminary study 
highlighting the potential use of fruit juices in microalgal 
biomass and lipid production and has the potential to 
serve as a guide for future experiments.  
 

Materials and Methods  
 

The Stock Cultures  
 

Schizochytrium limacinum PA-968 and 
Crypthecodinium cohnii CCMP-316 were grown in their 
specific standard media containing glucose and glycerol, 
respectively (Can, 2021). The medium was autoclaved at 
121°C for 20 min. The cultures were transferred into 250 
mL Erlenmeyers with 100 mL working volume (10% 

inoculation volume) in a class II biological safety cabinet 
to maintain the axenicity of the cultures. The 
cultivations were carried out at 120 rpm and 22°C under 
dark conditions in triplicate (Gürlek, et al., 2020b). 3 
days old cultures were used as stock cultures for 
microalgae productions.  
 
The Culture Production  
 

Firstly, 100% apple juice and 100% grape juice 
(Dimes, Türkiye) were filtered to separate their pulps. 
The total carbohydrate content of the standard media 
and the fruit juices were determined. The carbohydrate 
concentrations of apple juice and grape juice were 103 
g L-1 and 83 g L-1, respectively. In order to maintain the 
same C/N ratio in each juice-based media, different 
amounts of juices were added on the carbon source 
deficient standard media (Table 1). For this step, firstly 
the fruit juice-less media and standard media were 
autoclaved at 121°C for 20 min. Then, fruit juices were 
sterilized using a 0.22 µm sterile filter (Sartorius, 
Germany) and added into the sterilized media. The stock 
cultures were transferred to their standard media and 
the juice-based media. The cultures were inoculated to 

 

Figure 1. The flowchart of the presented paper, showing that cultures cultivated after determining the carbohydrate content of 
different media to maintain the same C/N ratio.  
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attain %10 inoculation volume to 250 mL Erlenmeyers 
with 150 mL working volume. These steps were carried 
out in a class II biological safety cabinet to maintain the 
axenicity of the cultures. The cultivations were 
performed heterotrophically at 120 rpm and 22°C in 
triplicate. After 11 days, the cultures were harvested at 
3500 rpm for 8 min, and this step was repeated 2 times 
with distilled water. The cell pellets were freeze-dried 
and kept at -20°C for further experiments. 
 
The Lipid Extraction  
 

The lipid extraction process was carried out 
according to the modified Bligh and Dyer method (Bligh 
& Dyer, 1959). 4 mL of chloroform: methanol (2:1, v/v) 
containing 0.25 mg mL-1 nonadecanoic acid and 0.5 mg 
mL-1 butyl hydroxytoluene was added on 100 mg dry 
biomass. The sample was sonicated by using Bandelin 
Sonopuls HD2070 sonicator (9 cycle and %55 power) for 
1 min (Kaya et al., 2011; Panchal et al., 2016) and kept in 
an orbital shaker at 120 rpm and 22°C for 24 h. After 
that, the samples were centrifuged at 3500 rpm for 8 
min. The supernatant was transferred into a new 
centrifuge tube, then centrifuged again. 1 mL of distilled 
water was added on the supernatant part to separate 
the lipid part. The lipid part was carefully filtered 
through 0.22 µm syringe type polytetrafluoroethylene 
(PTFE) filters (Sartorious Stedim, Germany) and 
collected in the pre-weighted glass vials. After the 
solvent evaporation at 36°C (Stuart RE300DB, UK), the 
lipid content of biomass (% in biomass) was measured 
gravimetrically. The process was performed in triplicate.  
 
Analytical Methods 
 

The culture suspension was daily sampled to follow 
the culture growth, and the analysis were carried out in 
triplicate. The optical density was detected using a 
UV/VIS spectrophotometer (Optizen, POP, MECASYS) at 
660 nm (Gürlek, et al., 2020b). The pre-weighted GF/C 
Whatman filter paper was washed with 1 mL of distilled 
water, 2 mL of culture suspension, and 1 mL of distilled 
water, respectively. The process was carried on using 
the vacuum pump (Knf, Germany). After keeping at 60 
°C for 24 h, the paper was weighted to determine dry 
weight of the sample (Oncel & Sukan, 2008). The cell 
counting was done using Thoma lam under the light 
microscope (Micros, Austria) and the cell concentration 
was calculated according to Formula 1. 

 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 (𝑐𝑒𝑙𝑙𝑠 𝑚𝐿−1) = 𝑇ℎ𝑒 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 ×

𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 × 104 (1) 

 

The total carbohydrate content of the standard 
media and fruit juices were determined according to 
DuBois method (Dubois et al., 1956). Firstly, glucose 
solutions are prepared in different concentrations at 0, 
20, 40, 60, 80, and 100 µg mL-1. Respectively, 0.5 mL of 
5% phenol solution and 2.5 mL of sulfuric acid (98%, 
Merck) were added into 0.5 mL of each glucose solution. 
The mixtures were vortexed and incubated for 15 min at 
room temperature, then vortexed again. The calibration 
curve was obtained by measuring the samples at 490 nm 
using a UV/VIS spectrophotometer (Quero-Jiménez et 
al., 2019). Distilled water was used as a blank. The 
carbohydrate concentration of the sample was 
determined based on the calibration curve. The process 
was carried out in triplicate. Since the total 
carbohydrate amount of each media is higher than the 
concentration evaluated for the calibration curve, 
necessary dilution processes were carried out using 
distilled water to reach the total carbohydrate value of 
the samples to the values in the calibration curve. Then 
the total carbohydrate amount obtained from the 
calibration curve was multiplied by this dilution factor 
and the total carbohydrate amount of the sample was 
calculated and reported.  
 
Statistical Analysis  
 

The results were examined using GraphPad Prism 
Software (Version 8.3.0). The statistical analysis was 
performed using means, standard deviation, and 
standard errors. The statistical meaningful differences 
were mentioned when the P value was <0.05. The 
comparison was processed with a 95% confidence 
interval.  
 

Results and Discussion 
 

The Growth Kinetics of the Cultures 
 

Microalgae species reveal different growth kinetics 
and biochemical composition as a response to the 
growth medium (C, N, C/N, etc.) (De Morais et al., 2015; 
Gupta et al., 2022; Rashid et al., 2014; Razzak et al., 
2017; Singh & Singh, 2014; Tandon & Jin, 2017). 
Therefore, the growth phase of each culture in different 
media should be underlined by following some 
parameters such as optical density, dry weight, and cell 
concentration (Gouveia et al., 2017). 

For S. limacinum, the time taken for each culture to 
complete the exponential phase was different due to 
variations between the media (Figure 2). The culture in 
apple juice-based medium reached its stationary phase 
on the 7th day in addition to performing the highest 

Table 1. The amount of fruit juices added on the carbon source deficient standard media (mL L-1) 

 Apple juice (mL L-1) Grape juice (mL L-1) 

Glucose deficient S. limacinum standard medium 291 mL L-1 361 mL L-1 
Glycerol deficient C. cohnii standard medium 116 mL L-1 144 mL L-1 
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growth capacity compared to others. Grape juice-based 
medium presented more suitable expendable nutrients 
than those in standard medium. The exponential growth 
of the culture in grape juice-based medium was finished 
on the 8th day, while the culture in standard medium 
performed the exponential phase on the 9th day. Juice-
based media were more suitable for S. limacinum 
production, with apple juice-based medium being 
utilized more to achieve the highest growth capability.  

Figure 3 shows that C. cohnii cultures completed 
their growth phases at different times with respect to 
medium content. The culture in grape juice-based 

medium continued to grow and reached the stationary 
phase on the 7th

 day. The growth capacity of C. cohnii 
cells in apple juice-based medium was lower than that 
in grape juice-based medium, and they kept exhibiting 
exponential phase until the 10th

 day. The lowest culture 
growth was observed in the culture in standard medium 
and the culture passed to their stationary phase after 5 
days. Juice-based media served as more favourable 
media for C. cohnii, and among them, grape juice-based 
medium was consumed more efficiently to reach the 
highest culture concentration.  
 

 

 

 

Figure 2. The growth kinetics of Schizochytrium limacinum cultures in juice-based media and standard medium observed by 
following (a) the optical density (OD) at 660 nm, (b) the dry weight, and (c) the cell concentration of the cultures.  
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The Microalgae Biomass Production 
 

In this study, S. limacinum produced different 
amounts of biomass depending on the medium. The 
biomass concentrations of S. limacinum were 9.52±0.08 
g L-1, 8.70±0.05 g L-1, and 8.58±0.02 g L-1 in apple juice-
based medium, grape juice-based medium, and 
standard medium, respectively (Figure 4). It was 
observed that S. limacinum cells had a higher growth 
rate in nutrient medium containing apple juice, which 
was followed by the cultures grew in grape juice-based 
medium and standard medium. The research compared 
the utilization capacity of glucose and fructose by S. 
limacinum culture and proved that the culture 
consumed more fructose instead of glucose and 

produced higher biomass in fructose-containing 
medium (Nazir et al., 2020; Patil & Gogate, 2015). S. 
limacinum cells have a carbon metabolism, whose first 
reaction is the direct formation of fructose-1-phosphate 
with phosphoenolpyruvate (PEP). In fructose 
metabolism, there is a need for an extra step in which 
glucose is first converted to glucose-6-phosphate and 
then formed to fructose-6-phosphate by glucose-6-
phosphate isomerase using an ATP molecule. As a result, 
using fructose as a carbon source requires less energy 
and steps than glucose; therefore, the cells consume 
more fructose than glucose. The fructose/glucose ratio 
of apple juice is higher than that of grape juice (Li et al., 
2020). That explains why the culture produced more 
biomass in apple juice-based medium than in grape 

 

 

 

Figure 3. The change in Crypthecodinium cohnii cultures grown in juice-based media and standard medium observed by following 
(a) the optical density (OD) at 660 nm, (b) the dry weight, and (c) the cell concentration of the cultures.  
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juice-based medium. As its standard medium includes 
glucose as a carbon source and there is no fructose, the 
culture growth capacity was lower in standard medium 
compared to juice-based medium (Can, 2021). 

Compared to S. limacinum cultures, C. cohnii in 
each of the media produced lower biomass. C. cohnii 
produced biomass as 3.45±0.06 g L-1, 1.52±0.04 g L-1, and 
1.35±0.02 g L-1 in grape juice-based medium, apple juice-
based medium, and standard medium, respectively. It 
was observed that C. cohnii cells had a higher growth 
rate in nutrient medium containing grape juice. This 
indicates that C. cohnii cells provide a higher biomass 
yield in grape juice-based medium with a higher glucose 
content, but cannot use fructose efficiently, and 
fructose is a less metabolized monosaccharide 
compared to those carried out by S. limacinum. Besides, 
juice-based media enhanced biomass production; 
standard medium containing glycerol showed a similar 
result to apple juice-based medium with a high fructose 
content in terms of biomass yield. In literature, glucose 
has been mentioned as a commonly used carbon source 
for C. cohnii cells (Mendes et al., 2009). In this case, it 
was concluded that glucose was metabolized at a higher 
rate by C. cohnii cells compared to fructose and glycerol 
and showed higher growth. 

The results were analysed via two-way ANOVA and 
Tukey’s multiple comparison test. In comparison of all 
results, the biomass production capacities of 
S. limacinum and C. cohnii cultures in different media 
were found to be statistically meaningful with different 
p-values. The p-values for S. limacinum cultures in apple 
juice-based medium and grape juice-based medium, 
and the cultures in apple juice-based medium and 
standard medium were <0.0001, while this value was 
0.0304 for S. limacinum cultures in grape juice-based 
medium and standard medium. For C. cohnii cultures, 
the p-value for the biomass production in apple juice-
based medium and standard medium, and the biomass 
production in grape juice-based medium and standard 
medium were <0.0001, whereas this value was reported 
as 0.0034 for C. cohnii cultures in apple juice-based 
medium and standard medium. 

The utilization of juice-based media enhanced 
biomass production in both cultures. Fruit juices, in 
addition to their high carbon content, are also known to 
be rich in micronutrients. Those micronutrients, such as 
iron, magnesium, zinc, and phosphorus, support 
microalgal growth and lipid accumulation. Moreover, 
fruit juices contain high amounts of vitamin B and C, and 
they play a supporting role in growth and lipid 
biosynthesis. Considering juice-based media and 
standard media, the contents of these fruit juices 
provide the opportunity to produce higher biomass 
compared to those of standard media. The results 
proved that the selection of carbon sources is an 
important step in microalgae production and has a great 
impact on cell growth. 
 
The Lipid Accumulation in Microalgae 
 

As the type of carbon source is important, the ratio 
between the C and N sources also has an impact on lipid 
accumulation (Wen & Chen, 2003; Zhu et al., 2007). 
Therefore, the amounts of fruit juice supplied to carbon-
free standard media were determined to maintain the 
same C/N ratio in each media in order to clearly 
understand the effect of juice types on lipid production.  

One of the most important steps in lipid 
metabolism in microalgae is acetyl-CoA biosynthesis 
pathway. The research showed that the addition of 
organic acids, which existed in the pathway, has an 
impact on lipid production. Apple juice and grape juice 
contain high amounts of citric acid and malic acid, which 
participate in these pathways. Comparing their 
concentrations, apple juice has more malic acid, while 
grape juice is richer in citric acid (Li et al., 2020). The 
reason grape juice-based medium provided highest lipid 
yield from S. limacinum (41.03±0.44%) is that grape juice 
contains the highest amount of citric acid compared to 
others, and S. limacinum utilizes acetic acid more 
efficiently compared to malic acid (Figure 5(a)). Besides 
that, the addition of malic acid has an increasing effect 
on lipid accumulation, although not as much as the 
effect of citric acid on S. limacinum lipid production (Ren 

 

Figure 4. The biomass production from Schizochytrium limacinum and Crypthecodinium cohnii during the cultivations in juice-based 
and standard media (SL: Schizochytrium limacinum, CC: Crypthecodinium cohnii, **** means P value≤0.0001, *** means 
P value≤0.001, ** means P value≤0.01, * means P value≤0.05).  
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et al., 2009). On the other hand, C. cohnii accumulated 
15.13±0.45% and 14.49±0.50% lipids in its biomass 
during the cultivation in apple juice-based medium and 
grape juice based medium. The result showed that C. 
cohnii has the capacity to consume both citric acid and 
malic acid at the same time. As each juice-based 
medium contains malic acid in different concentrations, 
the lowest lipid production was obtained from the 
culture grew in each standard medium as there is no 
additional acid in those media. There was a statistically 
meaningful difference between the lipid yields of the 
cultures in juice-based media and standard media, 
except between the samples obtained from C. cohnii 
produced in apple juice-based medium and grape juice-
based medium, as the P-value was higher than 0.05. 

It was observed that the lipid production from S. 
limacinum increased by 17.6% in the medium with apple 
juice (2.54±0.02 g L-1), while this increase was 65.3% in 
grape juice-based medium (3.57±0.02 g L-1) (Figure 5(b)). 
The highest amount of lipids was obtained from 
production using grape juice-based medium, and this 
value was followed by the cultures in apple juice-based 
medium and standard medium. Apple juice has a higher 

fructose/glucose ratio compared to grape juice, while 
there is no fructose in standard medium of S. limacinum 
(Can, 2021; Patil & Gogate, 2015). The reason the 
culture produced more lipids in juice-based media 
compared to standard medium can be the fructose 
content in fruit juices. C. cohnii culture produced lipids 
at 0.08±0.01 g L-1

 concentration in standard medium. 
The addition of apple juice caused an increase in the 
lipid amount 1.9 times higher (0.23±0.02 g L-1), while 
grape juice induced 5.3 times more lipid production in C. 
cohnii culture (0.50±0.03 g L-1). There was a slight 
difference in the lipid amounts between the productions 
carried out in the standard medium and the medium 
containing apple juice due to glycerol content of the 
standard medium and low glucose density of the apple 
juice-based medium.  

The results were statistically analysed via two-way 
ANOVA and Tukey’s multiple comparison test. The 
difference between the capacity of lipid production 
from S. limacinum and C. cohnii in each of the media was 
found to be statistically meaningful. The p-values for S. 
limacinum and C. cohnii cultures for lipid production in 
juice-based media and standard media were <0.0001.  

 

 

Figure 5. (a) The lipid yield of Schizochytrium limacinum and Crypthecodinium cohnii biomass and (b) the lipid production of the 
cultures produced in juice-based and standard media (SL: Schizochytrium limacinum, CC: Crypthecodinium cohnii, n.s.: 
non- significant, **** means P value≤0.0001, ** means P value≤0.01).  
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Conclusions  
 

Many experiments have been conducted to predict 
the potential of various carbon sources in microalgae 
cultivation to reduce costs in the commercial production 
of biomass and lipids from microalgae. These include 
beer production waste, sweet sorghum juice, crude 
glycerol, molasses, orange peel extract, date syrup, 
pineapple extract, waste food syrup, hydrolyzate, and 
coconut water. In this study, S. limacinum and C. cohnii 
cultures were heterotrophically produced in apple and 
grape juice-based media in order to underline their 
biomass and lipid production capacities. These cultures 
stand out with their high lipid content, which has 
important potential for industrial production. The 
production efficiency was compared with those cultures 
grown in standard media, including glucose or glycerol 
as carbon sources. For both cultures, the fruit juice-
based media provided microalgae cultures with more 
efficient biomass production and lipid accumulation 
than the use of pure glucose and glycerol due to the 
glucose, fructose, and micronutrient contents of the 
fruit juices. It was concluded that waste and pulp 
produced in fruit juice production, which are rich in 
valuable compounds such as carbons, vitamins, and 
organic acids, are promising candidates as nutrients that 
offer alternative solutions for establishing more 
sustainable, economic, and eco-friendly microalgae 
productions. For further studies (i) in order to maximize 
both growth and fatty acid biosynthesis in industrial 
scale production with heterotrophic microalgae species, 
it is recommended to combine different fruit wastes 
generated in the fruit juice industry, (ii) it is thought that 
optimization studies in which fruit juice industry wastes 
are applied in different concentrations in heterotrophic 
microalgae production, as well as trials of different 
operating modes, will be useful in scale-up studies, and 
(iii) genetic modification efforts in commercially 
produced microalgae are at a promising point, it is 
recommended to modify the genes involved in carbon 
metabolism and lipid biosynthesis pathways, which 
affect microorganism growth of S. limacinum and C. 
cohnii species in terms of increasing productivity.  
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