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Abstract 
 

The popularity of artificial neural networks (ANNs) in the field of fish population 
management studies is increasing daily, with the potential to provide more rapid and 
efficient results. Length-weight relationship (LWR) and condition factor (𝐶𝐹) are very 
important in fisheries management. In addition, it enables the estimation of the 
amount of fish at the beginning of the fishing period by using LWR in terms of 
sustainable fishing. In this study, data was estimated with alternative models of ANN 
to calculate the classical 𝐶𝐹 used to evaluate the LWR. For the case application, 
whiting (Merlangius merlangus euxinus L., 1758) samples (n=1408) caught from the 
Black Sea coast of Giresun were used. The root mean square error (RMSE), mean 
absolute percent error (MAPE) and R2 of the model were 0.1674, 0.0930, and 0.99869, 
respectively. The results showed that the Single Multiplicative Neuron (SMN)-ANN 
model yielded the highest accuracy according to performance criteria. Consequently, 
the findings indicate that the model effectively predicts the 𝐶𝐹, thus validating its 
estimation capability. This study represents the initial research in predicting the 𝐶𝐹 for 
whiting by the SMN-ANN model.  

 

Introduction 
 

In fisheries management, the success of breeding 
programs and production systems depends on 
accurately measuring and evaluating specific phenotypic 
features in individual organisms (Fernandes et al., 2020). 
The biology of the fishes and its living surroundings 
determine the necessary control instruments to manage 
the populations of fish sustainably (Costa et al., 2022). 
Biological indices used in aquaculture are also regarded 
as biological indicators of the variability within species, 
populations, and ecosystems, for example, density and 
biomass, and also condition indices such as 
hepatosomatic index (HSI) and condition factor (𝐶𝐹) 
(Costa et al., 2022; Matthias et al., 2018; Rau et al., 
2019). 

Length-Weight Relationship (LWR) is primarily 
used in estimating the biomass of the length 

distributions and or obtaining status indices (Gerritsen 
& McGrath, 2007). It provides critical data for estimating 
the population metrics and bio-energetics of the fish 
(Dinh et al., 2022; Jisr et al., 2018). Most analyses 
involving fisheries data typically require the estimation 
of LWR model parameters which is considered 
fundamental (Andrade & Campos, 2002). A correct 
prediction of LWR is of great importance not only for 
stock management and biomass estimation, but also for 
the increasingly important issue of protecting 
biodiversity (Dash et al., 2023). Biodiversity 
conservation is an increasingly important issue, and 
special attention needs to be focused on non-
destructive monitoring of fish, especially endemic or 
vulnerable species (Yang et al., 2022). While LWRs offer 
an efficient but invasive method for monitoring fish 
populations, recent developments in artificial 
intelligence (AI) and machine learning (ML) present 
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novel opportunities to automate and improve the 
prediction of critical fisheries indicators like 𝐶𝐹 (Álvarez-
Ellacuría et al., 2020). AI-focused methods allow for 
large-scale, real-time monitoring, improving prediction 
accuracy and supporting sustainable fishing and 
protective efforts (Gesami & Nunoo, 2024). 

The Artificial Neural Networks (ANNs) are models 
inspired from the structure and the working of the 
processes of biological thinking and learning, they can 
effectively create robust models from a few inputs and 
high degree of data dispersion and depend on the data 
being modeled from which non-linear data can be 
derived (Brosse et al., 2001). ANNs are capable of 
generating robust models from a small number of inputs 
that can effectively cover highly dispersed and non-
normal data and produce credible forecasts, depending 
on the strongly non-linear data being modeled 
(Czerwinski et al., 2007). ANNs are increasingly accepted 
as a technique that offers an innovative approach to 
overcoming complex and well-defined problems. Once 
trained, they can learn from examples, are robust to 
error in the sense that they can process missing data and 
noisy data, can deal with non-linear problems, and are 
capable of high-speed forecasting and generalizations 
(Kalogirou, 2001). The ANN is noted as a dependable, 
and alternative way of studying the growth patterns of 
some species of fish (Ozcan, 2019). There is an 
increasing number of studies that have sought to 
understand the dynamics of fish populations leveraging 
ANNs. The Mediterranean bottom fish species 
distribution estimation was done with Maravelias et al. 
(2003). Zheng and Zhang, (2010) attempted to calculate 
the number of a fish population through a fuzzy neural 
network method; Ordonez et al. (2020) studied the fish 
age estimation by a trained neural network model 
through fish otolith image analysis; Andayani et al. 
(2019) classification of fish species with the probabilistic 
neural network; Fish weight estimation through image 
analysis was done by Konovalov et al. (2019). The ANN 
captures the attention of many scholars due to its 
potential applications. For instance, advances in 
condition factor (𝐶𝐹) estimation have shown that ANN 
approaches are more convenient and useful than 
existing calculation methods owing to their reliable and 
accurate results. 

In recent years, Single Multiplicative Neuron 
(SMN), which has been offered as an alternative to 
general ANNs, has been proposed because of its simple 
network structure and fast learning ability (Bas et al., 
2016, 2016; Herz et al., 2006). In addition, it has been 
successfully applied to time series estimation in the 
study (Bas et al., 2016; Cagcag Yolcu et al., 2018; 
Egrioglu et al., 2023; Egrioglu & Bas, 2022; Gul et al., 
2024; Işık et al., 2024). The SMN model is characterized 
by several benefits, such as greater approximation 
abilities, easier network architectures, and quicker 
training algorithms (Bas et al., 2023; Gul et al., 2024). 
Nonlinear filters are able to manage additional 
disturbances, and owing to the iterative design of the 

algorithm, they can also adjust the modeling settings as 
new data are received (Wu et al., 2013). The SMN-ANN 
is a very simple structure and requires less number 
weighting and bias compared to well-known ANN 
models (Egrioglu et al., 2023). The SMN methodology is 
far easier to implement than the traditional MLP 
method, and it can provide much higher efficiencies if 
trained appropriately. Moreover, their achievement, 
like MLP, is based on the estimation of the model 
variables during the offline training and online training 
steps (Samanta, 2015). 

This is the first study to predict the 𝐶𝐹 of whiting 
(Merlangius merlangus euxinus L., 1758) using SMN-
ANN and machine learning techniques. Our study 
primarily innovates by predicting the traditionally 
calculated CF using the SMN-ANN approach and 
machine learning ANN. It is important to note that this 
methodology provides a framework for subsequent 
comparison of the data. In this application, 𝐶𝐹 
prediction can be made with big data sets without the 
requirement for manual calculations. Thus, the 
proposed methodology offers a viable solution that 
offers the potential to engender significant reductions in 
the time and labour required. It is also intended to 
identify areas for improvement in the work, with the 
main outputs to be obtained. 

 

Material and Method 
 

The fish were studied on whiting (Merlangius 
merlangus euxinus L., 1758) (n=1409) bought from the 
local fish market in Giresun province in the eastern Black 
Sea region of Türkiye. The total length (TL) of each 
specimen was measured to the nearest 0.1 cm and their 
weight was determined using digital balance with 
precision of 0.01 g. 

 
Statistical Calculations 

 
The homogeneity as well as the normality of the 

data were checked and verified by the Kolmogorov-
Smirnov test and the Shapiro-Wilk normality test by 
SPSS 26 software. 

 
Length-Weight Relationships 

 
The LWR studies have been widely performed for 

fisheries. They are important as they provide 
information about the growth, general welfare and 
suitability in the marine habitat (Dağtekin et al., 2022) 
and the b-value from the LWR is important for assessing 
fisheries status (Dinh et al., 2022; Froese & Pauly, 2002). 
The 'b' value in fish indicates the growth type according 
to the conditions in the environment where the fish live 
(Çayır and Bostancı, 2022). In determining the LWR, 
irrespective of the sex of the fish samples, the 
relationship is expressed as: 

 

𝑊 =  𝑎 ×  𝐿ᵇ (1) 
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The LWR was linearized as 𝑙𝑜𝑔(𝑊)  =  𝑙𝑜𝑔(𝑎)  +
 𝑏 ×  𝑙𝑜𝑔(𝐿), where 𝑊 is body weight (g), 𝐿 is total 
length (cm), 𝑎 is the intersection point and 𝑏 is the slope 
of the linear regression (Froese, 2006). 

 
Condition Factor 

 
The 𝐶𝐹 value assesses nutritional status based on 

height and weight measurements (Jin et al., 2015). 
Kumolu-Johnson and Ndimele, (2010) as well as Oni et 
al. (1983) believe this value is important in monitoring 
the density of feeding, growth, and the age of fish. The 
current and future populations will be measured based 
on 𝐶𝐹, which quantifies fish welfare and thus influences 
their growth, reproduction, and survival (Jana et al., 
1974). The following formula expresses the strain’s 
Fulton calculation with the 𝐶𝐹. 

 
𝐾 = 100 × (𝑊/𝐿3) (2) 

 
where, 𝑊 is weight in grams and 𝐿 is total lenght 

in cm (Fulton, 1904). 
 

Artificial Neural Networks 
 
Artificial intelligence (AI) is often defined as a 

computer with human-level intelligence and can be 
applied in business, healthcare, travel industry, 
autonomous vehicle, social media and education. ANN 
is a kind of artificial intelligence model that imitates the 
operation of the human brain (Aniza et al., 2022; Raj et 

al., 2021). ANNs represent a new approach to time 
series estimation. In the last decade there has been a 
growing interest in using ANNs to model and predict 
time series (Wu et al., 2015). ANN generally consists of 
input, hidden and output layers. Each layer consists of 
several nodes and neurons with weights assigned to 
perform simple operations to calculate the output 
(Relvas & Miranda, 2018). ANNs can derive optimum 
values from complex and nonlinear data with acceptable 
efficiency. ANN works on the principle of transmitting 
information through the interconnection of several 
neurons. They simulate the human nervous system and 
work like the brain (Paturi et al., 2022). A general 
network is presented in Figure 1. 

Traditionally, neural networks have a very simple 
structure consisting of only input and output layers, and 
these are called single-layer neural networks or shallow 
neural networks. Neural networks with more than one 
hidden layer are called multilayer neural networks or 
deep neural networks. Most of the contemporary neural 
networks used in practical applications are deep neural 
networks (Kim, 2017; Matel et al., 2022). A few 
examples of machine learning techniques are support 
vector machines (SVM), decision trees (DT), random 
forests (RF), extreme gradient boosting (XGBoost), 
artificial neural network (ANN) models, and more new 
models. ANN models are based on the neural networks 
seen in living things. The perceptron method, radial 
basis function network (RBF), extreme learning machine 
(ELM), and back propagation (BP) are examples of ANN 
learning algorithms (Li et al., 2022). 

 

Figure 1. ANN architecture utilized in this study. 
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Single Multiplicative Neuron-ANN 
 
The Single Multiplicative Neuron (SMN) model was 

used to generate the nonlinear observed mapping of 
dynamic filters. Dynamic filters are used to train the 
SMN model sequentially online by adjusting the model 
parameters within the framework of minimum variance 
(Wu et al., 2015). The new SMN model has been put 
forth as a new approach to the general MLP type of 
ANN. The SMN model is derived from neuroscience's 
single neuron computation (Koch, 1997; Koch & Segev, 
2000; Samanta, 2011). As stated in Kolay and Tunç, 
(2021) SMN has a lower computation cost than MLP and 
PSNN because it has a simpler structure with fewer 
parameters. The SMN neuron model is based on the 
average of the multiplicative inputs. In other words, the 
SMN neuron model has input of the weighted sum of its 
inputs (Attia et al., 2012). In this work, the multiplicative 
single neuron model function approach proposed in 
Yadav et al., (2007) implemented as a machine learning. 
Because the number of neurons required is much lower, 
the model's generalization ability exceeds that of a 
multilayer perceptron configured neural network. The 
architecture of the single multiplicative artificial neural 
network is illustrated in Figure 2. 

In the SM-ANN, the output is computed as a non-
linear transformation of the product of the linear 
transformations of the inputs. The computations of the 
outputs of the single multiplicative artificial neural 
network with p inputs are computed using the following 
formulas: 

 

𝑛𝑒𝑡 = ∏ (𝑤𝑖 × 𝑖𝑛𝑝𝑢𝑡𝑖 + 𝑏𝑖)
𝑝
𝑖=1  (3) 

 

𝑜𝑢𝑡𝑝𝑢𝑡 =
1

1+exp (−𝑛𝑒𝑡)
 (4) 

The ANN contains a total of 2p weights and biases 
values. Training this neural network is a problem of 
estimating 2p parameters. The objective function in the 
optimization problem can be used as the sum of squares 
of error. The optimization problem is expressed as 
follows: 

 

min
{𝑤1,…,𝑤𝑝,𝑏1,..,𝑏𝑝}

∑ (𝑜𝑢𝑡𝑝𝑢𝑡𝑗 − 𝑡𝑎𝑟𝑔𝑒𝑡𝑗)
2𝑛

𝑗=1  (5) 

 
In formula (5), n stands for the amount of learning 

examples. The solution to the problem of optimization 
gives a set of the parameters that will make the network 
outputs as close as possible to the targets (or also called 
set point). 

The optimization problem presented in formula (5) 
can be addressed using methods of nonlinear least 
squares as well as a whole range of artificial intelligence 
optimization approaches such as genetic and particle 
swarm optimization. It is well recognized that particle 
swarm optimization yields very effective outcomes 
during the training of artificial neural networks. In this 
investigation, a PSO training algorithm that simulates 
flock intelligence devised for numerical optimization 
problems is adopted. The training algorithm based on 
PSO is outlined stepwise below. 

Algorithm 1. The PSO-based training algorithm for 
a single multiplicative artificial neural network manual. 

Step 1. The parameters relating to the processes of 
the training are set. 

𝑝𝑛: The size of the swarm or the number of 
particles, 𝑐1: Social coefficient, 𝑐2: Cognitive coefficient, 
𝑤: Inertia weight, 𝜀: error tolerance for relative error 
difference, 𝑚𝑎𝑥𝑖𝑡𝑟: maximum number of iterations. 

The counters are established. The re-start strategy 
counter (rsc) and early stopping counter (esc) are 
assumed to be zero. 

Step 2. The following outlines how the starting 
coordinates and velocities are chosen in a random 
manner: 

 

𝑋𝑖,𝑗
(0)

~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) (6) 

 

𝑉𝑖,𝑗
(0)

~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1) (7) 

 

𝑋𝑖,𝑗
(𝑘)

 is jth position value of ith particle of the 

population at kth iteration. The positions of an element 
in a population correspond to the weights and biases 
values of the neural network, and there are 2𝑝.  

Step 3. The 𝐶𝐹 function values are calculated for 
each swarm member. The 𝐶𝐹 function is selected as the 
sum of square errors. 

 
𝑆𝑆𝐸 = ∑ (𝑜𝑢𝑡𝑝𝑢𝑡𝑗 − 𝑡𝑎𝑟𝑔𝑒𝑡𝑗)2𝑛

𝑗=1  (8) 

 
Step 4. Based on the computed values of the 𝐶𝐹 

function, the optimal value from the population, (𝑋𝑏𝑒𝑠𝑡
𝑘 ) 

is selected as gbest and its 𝐶𝐹 value (𝑆𝑆𝐸𝑏𝑒𝑠𝑡
𝑘 ) stored. In 

addition, the Pbest matrix is formed as a storage for 
every particle in the swarm. 

Step 5. A new swarm is created by replacing the 
positions of all elements in the swarm with the following 
equation. 

 

Figure 2. The architecture of the single multiplicative artificial neural network. 
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𝑉𝑖,𝑗
(𝑘+1)

= 𝑤𝑉𝑖,𝑗
(𝑘+1)

+ 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖,𝑗
(𝑘)

− 𝑋𝑖,𝑗
(𝑘)

) +

𝑐2𝑟2(𝑋𝑏𝑒𝑠𝑡𝑗
(𝑘)

− 𝑋𝑖,𝑗
(𝑘)

) (9) 

 

𝑋𝑖,𝑗
(𝑘+1)

= 𝑋𝑖,𝑗
(𝑘)

+ 𝑉𝑖,𝑗
(𝑘+1)

 (10) 

 
Step 6. The 𝐶𝐹 function values are calculated for 

each swarm member by using equation (9). According to 
the calculated 𝐶𝐹 function values, the best element 

(𝑋𝑏𝑒𝑠𝑡
𝑘 ) in the population and its 𝐶𝐹 value (𝑆𝑆𝐸𝑏𝑒𝑠𝑡

𝑘 ) are 

obtained and compared with 𝑆𝑆𝐸𝑏𝑒𝑠𝑡
𝑘−1. If  𝑆𝑆𝐸𝑏𝑒𝑠𝑡

𝑘 >

𝑆𝑆𝐸𝑏𝑒𝑠𝑡
𝑘−1  then 𝑆𝑆𝐸𝑏𝑒𝑠𝑡

𝑘 = 𝑆𝑆𝐸𝑏𝑒𝑠𝑡
𝑘−1. 

Step 7. The re-starting strategy counter (𝑟𝑠𝑐 =
𝑟𝑠𝑐 + 1 ) is increased and its value is checked.  If the 
𝑟𝑠𝑐 > 𝑙𝑖𝑚𝑖𝑡1 then all positions are re-generated by 
using (6) and (7), the 𝑟𝑠𝑐 is taken as zero.  

Step 8. The early stopping rule is checked. The 𝑒𝑠𝑐 
counter is increased depending on the following 
condition. 

 

𝑒𝑠𝑐 = {𝑒𝑠𝑐 + 1 , 𝑖𝑓 
𝑆𝑆𝐸𝑏𝑒𝑠𝑡(𝑘)−𝑆𝑆𝐸𝑏𝑒𝑠𝑡(𝑘−1)

𝑆𝑆𝐸𝑏𝑒𝑠𝑡(𝑘) < 𝜀

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11) 

 
If 𝑒𝑠𝑐 > 𝑙𝑖𝑚𝑖𝑡2 is satisfied, the algorithm is 

stopped otherwise go to Step 5. 
 

Machine Learning Algorithms 
 
In order to evaluate ANN models for 𝐶𝐹 prediction, 

the machine learning Toolbox 12.4 in the MATLAB 
environment was used. Using the cross-validation 
procedure reduced the possibility of overestimation. For 
testing purposes, the data set was split up into five 
levels, and each layer's prediction and validation were 
assessed independently. The objective of this approach 
is to enhance the overall performance of the model and 
prevent overfitting.  

In this study, the weight and bias parameters for 
the customized ANN model were optimized, with the 
following hyperparameters set: Activation=ReLU, 
Iteration limit=1000, Optimiser=Bayesian optimisation, 
Number of fully connected layers=3, First layer size=10, 
Second layer size=10, Third layer size=10, and 
Activation=ReLU. The machine learning ANN algorithms 
used in the study are listed in Table 1 along with their 
corresponding kernel functions. 

 
Neural Network Models and Hyperparameter 
Configurations 

 
This study examines different ANN models used in 

MATLAB. The data in Table 2 contains the 

hyperparameters of six different ANN models. The 
Optimisable Neural Network stands out as a flexible 
model that can vary between 1 to 3 layers and utilize 
different activation functions. Other models have 
predefined layer and neuron structures. The Wide 
Neural Network consists of a single wide layer with 100 
neurons, while the Bilayered and Trilayered Neural 
Networks contain two and three layers, respectively. 
The Medium and Narrow Neural Networks are single-
layer architectures with 25 and 10 neurons, respectively. 

The ReLU activation function is predominantly 
used across all models, except for the Optimisable 
Neural Network, which also explores Sigmoid, Tanh, 
ReLU, and None as activation options. The regularization 
strength (Lambda) is set to zero in most models, with the 
exception of the Optimisable Neural Network, which 
optimizes it within a defined hyperparameter range. 
This raises concerns about the risk of overfitting, 
suggesting the necessity of regularization. Additionally, 
all models apply data standardization. 

In conclusion, the Optimisable Neural Network 
offers the highest flexibility due to its broad 
hyperparameter search space, whereas other models 
are optimized for specific configurations. Future studies 
could analyze the impact of different activation 
functions and regularization parameters on 
performance to determine the most suitable model 
configurations. 

 
Determining the Correctness of the Model 

 
To assess the models, they were evaluated using 

the criteria of mean square error (RMSE), coefficient of 
determination (R²) and mean absolute percent error 
(MAPE) respectively Equations given in, respectively 
were used to determine RMSE (12), MAPE (13) and R² 
(14) Training the model, performing statistical analysis 
of parameters, and calculating correlations coefficients, 
error analysis, etc. mainly performed on the MATLAB 
2018b by using notebook with Intel(R) Core (TM) i5-
1235U CPU 4.40 GHz processor. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑜𝑢𝑡𝑝𝑢𝑡𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡𝑡)2𝑛

𝑡=1  (12) 

 

𝑀𝐴𝑃𝐸 = 
1

𝑛
∑ |

𝑜𝑢𝑡𝑝𝑢𝑡𝑡−𝑡𝑎𝑟𝑔𝑒𝑡𝑡

𝑡𝑎𝑟𝑔𝑒𝑡𝑡
|𝑛

𝑡=1  (13) 

 
R² = 1 − (∑ (outputt − targett)2/n

t=1 (outputt −
targett¯ )2 (14) 

 
It presents the predicted data in relation to the 

observed data. 𝑛 is the total number of time series data 

Table 1. Machine learning ANN algorithms used in the study 

Neural Network & Algorithm / Kernel Function 

Narrow Neural 
Network 

Medium Neural 
Network 

Wide Neural 
Network 

Two-Layer Neural 
Network 

Three-Layer 
Neural Network 

Custom Neural 
Network 
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sets. RMSE refers to the mean of the forecasts’ errors on 
the same forecast line, while for the data set, 𝑛 MAPE 
refers to the mean of absolute errors on the given 
forecast line. The larger the accuracy of the model is the 
smaller the value of RMSE and MAPE (Chicco et al., 
2021). Furthermore, the RMSE specifies whether the 
observed value corresponds with the predetermined 
value of the model. The investigation of the relation 
between dependent and independent variables is 
realized using correlation, whereas the variance of 
dependent and independent variables is explained using 
R2 (Jasmin et al., 2022).  

 

Results and Discussion 
 

In this part, we provide the computed outcomes 
for the condition factor alongside the estimation results 
derived from performing the SMN-ANN algorithm. The 
MATLAB environment was used for the programming of 
this algorithm. In the end, some performance evaluation 
tests were conducted to check the accuracy obtained in 
forecasting the 𝐶𝐹 results. 

 
Length-Weight Relationship and 𝑪𝑭 

 
The total lengths of 1409 specimens varied 

between 10.1 and 27.6 cm, with the average of 
14.90±0.041 cm and their weights varied between 8.0 
and 94.0 g, with the average of 24.45±0.22 g. The length-
weight relationship for all individuals was calculated as 
W=0.0184*L2.648 (Figure 3). The lengths and weights of 
the fish vary between 27.6 and 10.1 cm and 94.0 and 8.0 
g, respectively. The b value, which was calculated 
according to the least squares method and showing the 
body shape of the fish, was calculated as 2.648. This 
shows that the fish grew negatively allometrically. In this 
study, while calculating the condition factor, the value 
of 3 was taken assuming that the fish grows 
isometrically. The mean condition factor was 
0.72±0.003. 

Application of Single Multiplicative Neuron-ANN for 
𝑪𝑭 

 
Accuracy criteria were used to evaluate the 

effectiveness of the 𝐶𝐹 calculated from whiting 
(Merlangius merlangus euxinus L., 1758) fish in 
estimating based on the SMN-ANN algorithm. In this 
way, estimations were made on all data of each 
condition factor with calculations. RMSE and MAPE 
criteria were chosen for the accuracy of the actual 
estimation. The all-ANN applications were conducted in 
Matlab by using notebook with Intel(R) Core (TM) i5-
1235U CPU 4.40 GHz processor. The weight and bias 
estimates obtained for the optimal neural network 
architectures and 𝐶𝐹 values are given in Figure 4 and 
Table 3. 

Lewis scale was used in this study to interpret the 
MAPE result. According to the Lewis scale, MAPE less 
than 10% signifies highly accurate forecast, whereas 
MAPE within 10% to 20% range shows good forecast, 
MAPE within 20% to 50% range implies a reasonable 
forecast, and MAPE greater than 50% reflects inaccurate 
forecast (Dey et al., 2023). As shown in Table 3, the 
SMN-ANN achieved a MAPE of 0.0930 in predicting CF, 
denoting high predictive accuracy. Unlike many studies, 
the MAPE value of SMN-ANN was found to be quite low 
(Benzer et al., 2017; Benzer and Benzer, 2018; 2016; 
Ozcan, 2019). The model with lower RMSE value is 
considered as the best prediction performance model 
(Ibrahim et al., 2023). When the literature was 
examined, no study on fish condition factor related to 
RMSE verification method was found. However, it was 
determined that RMSE was widely used in different 
studies. This study determined that the RMSE applied to 
the condition factor was relatively low compared to 
other studies (Chou et al., 2018; Zhou et al., 2018 ; Latif 
et al.,2022). Figure 5. shows the comparative analysis of 
the model's prediction results. It can be seen from the 
figure that the SMN-ANN algorithm can predict the 
approximate trend when compared with the observed 
values. 

Table 2. Neural networks models types and hyperparameters 

Model Type Preset Hyperparameters 

N
eu

ra
l N

et
w

o
rk

 

Optimisable 
Neural Network 

Iteration limit: 1000; Optimized Hyperparameters; Number of fully connected layers: 1; 
Activation: Sigmoid; Regularization strength (Lambda): 2.2828e-08; Standardize data: Yes; 
First layer size: 16; ; Hyperparameter Search Range; Number of fully connected layers: 1-3; 
Activation: ReLU, Tanh, Sigmoid, None; Standardize data: Yes, No; Regularization strength 
(Lambda): 7.1023e-09-71.0227; First layer size: 1-300; Second layer size: 1-300; Third layer 

size: 1-300 
Wide Neural 

Network 
Number of fully connected layers: 1; First layer size: 100; Activation: ReLU; Iteration limit: 

1000; Regularization strength (Lambda): 0; Standardize data: Yes 
Bilayered Neural 

Network 
Number of fully connected layers: 2; First layer size: 10; Second layer size: 10; Activation: 

ReLU; Iteration limit: 1000; Regularization strength (Lambda): 0; Standardize data: Yes 

Trilayered Neural 
Network 

Number of fully connected layers: 3; First layer size: 10; Second layer size: 10; Third layer 
size: 10; Activation: ReLU; Iteration limit: 1000; Regularization strength (Lambda): 0; 

Standardize data: Yes 
Medium Neural 

Network 
Number of fully connected layers: 1; First layer size: 25; Activation: ReLU; Iteration limit: 

1000; Regularization strength (Lambda): 0; Standardize data: Yes 
Narrow Neural 

Network 
Number of fully connected layers: 1; First layer size: 10; Activation: ReLU; Iteration limit: 

1000; Regularization strength (Lambda): 0; Standardize data: Yes 
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Performance Evaluation of Artificial Neural Network 
Models 

 
The assessment of different ANN models using 

basic evaluation criteria namely RMSE, MSE, R² and MAE 
is presented in Table 4. These criteria give an idea 
regarding the accuracy and generalisability of the 
models. The model with the lowest error rates and the 
highest R² score was taken as the best model. 

According to the results of the RMSE value, the 
best one is the Optimisable Neural Network with a RMSE 
value of 0.00425, the MSE value of 0.00002 and MAE 
value of 0.00075 along with a highest R² value of 
0.99869. This shows the model can predict better than 
other ANN structures. The better performance of the 
Optimisable Neural Network is due to its optimised 

hyperparameter setting, the use of different activation 
functions and the ability to dynamically adjust layers. 
Unlike that, models error are more while the R² value 
was less. Comparatively, predictive faculties are poor 
comparing with this model. In view of these results, the 
Optimisable Neural Network is the best-performing 
model in this study. Research in future should test it on 
other dataset, analyse overfitting robustness and check 
performance with more layers. These investigations will 
provide additional insight into the generalization ability 
and applicability of ANN models in practice. As 
compared to earlier literature on machine learning-
based predicting studies, this study has improved 
performance significantly. The results achieved at 
several measuring stations, with high R2 values (up to 
0.99), demonstrate the accuracy of the proposed model. 

 

Figure 3. Lenght-weight relationship for all individuals. 

 

 

Figure 4. The optimum single multiplicative neuron model artificial neural network for 𝐶𝐹. 
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These results show a greater success rate than other 
similar strategies that have been reported in literature. 
Ozcan, (2024) revealed 0.96297 to be the highest R² 
value obtained for validation. Moreover, the low RMSE 
values (0.00425) further reinforce the efficiency and 
accuracy capacity of the model. The results obtained in 
the same way indicate a higher level of success 
compared to similar studies in the literature. Khan & 
See, (2016) reported the highest RMSE value reached in 
the validation process as 0,0181. Mutlu & Akkan, (2025) 
reported that the GPR model predicted the condition 
factor for horse mackerel (Trachurus mediterraneus 
Steindachner, 1868) in the Black Sea with the highest 
accuracy, giving an RMSE value of 0.0017240. 
Furthermore, Akkan et al., (2024) showed that the GPR 
model most accurately predicted the 𝐶𝐹 of Nemipterus 

randalli Russel, 1986 in the Mediterranean Sea, yielding 
an RMSE value of 0.00100807. 

The Optimisable Neural Network model employed 
in this study effectively depicts the relationships 
between predicted and observed values. As can be seen 
from the Figure 6, the model has generated accurate 
predictions by capturing the general structure of the 
data to a large extent. The model's predictions are 
particularly close to the observed values in the dominant 
dataset range, indicating that it is well adapted to the 
data. As for the model's performance, low error rates 
(RMSE and MSE) and a high coefficient of determination 
(R2=0.99869) indicate that the model has a very 
successful generalization capacity, demonstrating that it 
operates largely without producing systematic errors 
and that the predicted values are highly reliable. 

Table 3. Data and validation values used for SMN-ANN simulation 

𝐶𝐹 Weights and Biases 

Test  Values Predicted  Values Test 
Values 

Predicted 
Values 

Test 
Values 

Predicted Values   
𝐶𝐹1 𝐶𝐹2 𝐶𝐹3 

0.7726 0.7424 0.7500 0.7887 0.6068 0.6708 
 

-3.588169 -0.7684929 -0.2138756 
0.7438 0.7577 0.6499 0.7753 0.8163 0.7474 

 
b1 b2 b3 

0.7445 0.7340 0.6600 0.7291 0.6552 0.6996 
 

-0.24297 0.542833 1.417865 
0.7210 0.7114 0.6024 0.6489 0.7052 0.7236 

    

0.7970 0.7329 0.7268 0.7563 0.7040 0.7068 
 

RMSE 0.1674 
 

0.7572 0.7282 0.6506 0.7013 0.7544 0.6802 
 

MAPE 0.0930 
 

0.7187 0.7106 0.7629 0.7752 0.6954 0.7223 
    

0.6593 0.7059 0.7429 0.7236 0.7294 0.7252 
    

0.7718 0.7224 0.6757 0.7196 0.7089 0.7102 
    

0.6460 0.6930 0.7335 0.7241 0.8127 0.7130 
    

0.6590 0.6955 0.7249 0.6835 0.6528 0.7164 
    

0.6798 0.7003 0.6166 0.6836 0.6077 0.6808 
    

0.8185 0.7353 0.7052 0.7236 0.6692 0.6805 
    

0.6516 0.7315 0.6439 0.6671 0.6773 0.7087 
    

0.6703 0.6858 0.7157 0.7198 0.6162 0.7139 
    

0.7848 0.7418 0.6462 0.7155 0.7722 0.7546 
    

0.6669 0.7304 0.8634 0.7263 0.8348 0.7832 
    

0.7174 0.7686 0.7230 0.7181 0.7566 0.7266 
    

0.7407 0.7398 0.6976 0.7268 0.8436 0.7519 
    

0.6570 0.7108 0.6838 0.7089 0.6773 0.7370 
    

0.7004 0.7238 0.7064 0.7184 1.6175 0.8540 
    

0.6757 0.7060 0.6865 0.6857 0.6606 0.7046 
    

0.6924 0.7333 0.7378 0.6827 0.8179 0.7334 
    

0.6736 0.7303 0.7502 0.6809 0.7752 0.7522 
    

0.6869 0.7126 0.6008 0.6941 1.1610 0.7964 
    

0.6899 0.7055 0.7118 0.7197 0.7729 0.7364 
    

0.6961 0.7417 0.6950 0.7288 2.2615 0.9088 
    

0.6698 0.6832 0.7551 0.6922 0.6305 0.6893 
    

0.7232 0.7198 0.7198 0.7238 0.5411 0.6613 
    

0.6530 0.7083 0.7678 0.7518 0.7838 0.7143 
    

0.7500 0.7406 0.6651 0.7160 0.6321 0.7211 
    

0.6928 0.7204 0.6385 0.6683 0.6961 0.7084 
    

0.6445 0.6927 0.6380 0.6566 0.7352 0.7141 
    

0.9074 0.7712 0.6779 0.7527 0.6338 0.6573 
    

0.6758 0.7519 0.7407 0.7211 0.6396 0.7146 
    

0.8919 0.7825 0.7704 0.7260 0.6422 0.6591 
    

0.7098 0.7220 0.4306 0.6830 0.7523 0.7797 
    

0.7192 0.7065 0.7647 0.7687 0.4947 0.6798 
    

0.6422 0.7426 0.5894 0.7104 0.7530 0.7180 
    

0.6739 0.7224 0.6122 0.7365 0.6971 0.7170 
    

0.7039 0.7398 0.5846 0.7242 0.6322 0.6588 
    

0.6503 0.7088 0.6519 0.7063 1.7530 0.8674 
    

0.7396 0.7574 0.7881 0.7805 1.0924 0.7930 
    

0.6963 0.7533 0.7378 0.7206 0.7010 0.7326 
    

0.6178 0.7403 0.7072 0.7486 0.6265 0.7128 
    

0.6883 0.7440 0.6284 0.6529 0.7184 0.7254 
    

0.7556 0.7372 0.7531 0.7269   
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Analysis of the graph reveals that the model's 
predictions are comparatively less sensitive at specific 
extremes and that the anticipated values are 
concentrated in a particular region. This implies, 
however, that the model is not too sensitive to extremes 
and has a more balanced structure in detecting extreme 
values. Furthermore, the model has effectively learned 
the data distribution and struck the ideal balance 
between accuracy and precision, as seen by the fact that 
most of the projected values are near to the observed 
values. 

The observed and anticipated values were 
compared in order to assess the prediction accuracy of 
the Optimisable Neural Network model that was 
employed in this investigation. Analysis of Figure 7 
reveals that the majority of the projected values have a 
distribution that is quite near to the ideal prediction line 
(y=x line). This demonstrates that the model successfully 
learns the patterns on the dataset and can predict the 
real values with a high accuracy rate. 

The model's error analysis reveals that there are 
very few differences between the expected and 

observed values. It was discovered that only a small 
number of extremes deviated from the ideal prediction 
line, indicating that while the model can generate 
predictions that are generally applicable, there may be 
tiny error margins at some extreme values. Nonetheless, 
the model's general stability and dependability are 
supported by the small number of deviations. Figure 8 
illustrates the evolution of the Optimizable Neural 
Network model's minimal MSE throughout training as 
well as the effectiveness of the hyperparameter 
optimization procedure. The iterations are shown on the 
X-axis, while the minimal MSE value is shown on the Y-
axis. Examining the model's optimization process 
reveals that the error value fluctuates significantly in the 
initial iterations, but that the model's error rate slowly 
drops and stabilizes at a specific level in subsequent 
iterations. 

In the early phases, the model's sensitivity to the 
optimization process and its quick learning ability are 
demonstrated by the abrupt drops in the MSE value. The 
error value, however, is seen to follow a horizontal 
trajectory after a specific number of iterations, 

 

Figure 5. Comparison results between test data and prediction results. 

 
Table 4. Performance evaluation of various neural network architectures in prediction 

Model RMSE MSE R2 MAE 

Optimisable Neural Network 0.00425 0.00002 0.99869 0.00075 
Wide Neural Network 0.00851 0.00007 0.99475 0.00168 
Bilayered Neural Network 0.01128 0.00013 0.99076 0.00329 
Trilayered Neural Network 0.01179 0.00014 0.98990 0.00291 
Medium Neural Network 0.01900 0.00036 0.97379 0.00343 
Narrow Neural Network 0.02804 0.00079 0.94290 0.00717 
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suggesting that the model offers a steady convergence 
and that the optimal hyperparameters are achieved. The 
stages in which the optimal parameters were identified 
are denoted by the square (best point hyperparameters) 
and circle (least error hyperparameters) symbols on the 
graph. These results show that the model's 
hyperparameter optimization procedure was 
successfully finished and that the model achieved the 
lowest possible error level. Consequently, the learning 
process continually obtained the lowest error rate, and 
the model hyperparameter optimization procedure was 
effectively finished. This demonstrates the model's 
strong potential for generalization as well as its 
consistent and dependable predicting performance. 

 

Conclusion and Suggestions 
 

In this study, the performance of the SMN-ANN 
based prediction model was evaluated for the 
prediction of 𝐶𝐹 obtained from whiting. The estimation 
of this standard value, which provides crucial 
information about the condition factor, the 
morphological structure of fish, and their nutritional and 
developmental status, will be of great convenience. The 
fact that the estimation results of the SMN algorithm are 
close to the test data indicates that this application has 

yielded a successful outcome. The low MAPE value 
(0.0930) also enhances the reliability of the algorithm. 
However, further analysis revealed that the Optimisable 
Neural Network model significantly outperformed the 
SMN-ANN model in terms of prediction accuracy. The 
model achieved an exceptionally low RMSE (0.00425) 
and MAE (0.00075), indicating minimal error margins. In 
addition, the high R2 value of 0.99869 indicates that the 
model explains nearly all the variance in the dataset, 
proving its reliability. These findings underscore the 
neural networks better performance optimization and 
𝐶𝐹 value forecasting accuracy driven by the Optimisable 
Neural Network approach.   

The SMN model, while exhibiting a solid learning 
ability, highly reliable results, and further contributing to 
the literature, was outperformed by the Optimisable 
Neural Network model that showcased superior 
accuracy and efficiency. More precise forecasting 
models enable better monitoring of the fish growth and 
development processes, resulting in the sustainable and 
efficient production of aquaculture. Future studies 
should test these models' generalizability by using 
different datasets and applying cross-validation to check 
their reliability under different conditions. Furthermore, 
the models are compatible with a wide variety of data 
types, including survey data (measurements), satellite 

 

Figure 6. Scatter point analysis for predicted and observed values. 
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data (water temperature, chlorophyll), and laboratory 
data (nutrient content), and thus represent a valuable 
contribution to bioecological studies.   
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