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Abstract 
 

Dissolved oxygen (DO) is a vital parameter in intensive rainbow trout aquaculture, directly 
influencing fish growth, health, and survival. As such, accurate monitoring and prediction of 
DO levels are crucial for ensuring sustainable and efficient aquaculture practices. This study 
assessed and compared the predictive performance of four machine learning algorithms 
Multivariate Adaptive Regression Splines (MARS), Random Forest (RF), Extreme Gradient 
Boosting (XGBoost), and Averaged Neural Networks (avNNet) in estimating DO 
concentrations based on a range of water quality parameters. A total of 120 samples were 
collected from 12 rainbow trout farms across Türkiye. The input variables included 
suspended solids, electrical conductivity, turbidity, nitrate, nitrite, ammonia, ammonium, 
orthophosphate, pH, water temperature, and total phosphorus. DO levels ranged between 
8 and 15 mg/L. Model performance was evaluated using Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE), Mean Absolute Percent Error (MAPE), and the coefficient of 
determination (R²). All models demonstrated strong predictive accuracy, with XGBoost 
achieving the best overall performance (MAE: 0.44, RMSE: 0.58, MAPE: 0.04, R²: 0.78), 
followed by RF, avNNet, and MARS. These findings highlight XGBoost as a robust predictor 
of dissolved oxygen levels in aquaculture systems, which may contribute to improving water 
quality management and increasing productivity in rainbow trout aquaculture. 
 

Introduction 
 

Rainbow trout (Oncorhynchus mykiss) is one of the 
most widely farmed cold-water fish species globally. In 
2019, global trout production was estimated at 
approximately 940,000 tons, with rainbow trout 
accounting for 97% of this total (FAO, 2022). Countries 
such as Chile, Türkiye, and Iran have experienced 
substantial growth in intensive rainbow trout 
aquaculture in recent years (FAO, 2020), a trend 
expected to continue due to the species’ high 
commercial value and strong market demand (D’Agaro 
et al., 2022). Among the various environmental factors 
affecting trout farming, water quality, particularly 
dissolved oxygen (DO) concentration, plays a central 

role. DO is a key indicator of water quality and a critical 
determinant of fish metabolism, growth, immune 
response, and overall survival. Inadequate DO levels can 
impair feeding behavior, suppress growth, and increase 
susceptibility to disease and mortality (Welker et al., 
2019). Conversely, excessively high DO concentrations 
may lead to gas bubble disease, a potentially fatal 
condition (Arabacı et al., 2020). Beyond its biological 
significance, DO management also represents a major 
operational cost in trout farming, second only to feed 
and labor (Royer et al., 2021). Therefore, effective 
control and accurate prediction of DO levels are 
essential for maintaining fish health and optimizing 
aquaculture profitability (Jiang et al., 2021). 
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DO concentrations in aquaculture systems are 
influenced by a complex interplay of biotic and abiotic 
factors, including water temperature, pH, ammonia, 
nitrite, nitrate, orthophosphate, turbidity, electrical 
conductivity, and suspended solids (Jiang & Yan, 2022; 
Moon et al., 2022). These variables often interact in 
dynamic and nonlinear ways, which makes modeling DO 
behavior particularly challenging (Sun et al., 2021; Yin et 
al., 2021; Guo et al., 2022). Traditional statistical or 
linear regression models generally fall short in capturing 
these complex relationships. In contrast, machine 
learning (ML) algorithms, especially those capable of 
modeling nonlinear interactions and high-dimensional 
datasets, have emerged as powerful alternatives for 
environmental and water quality prediction tasks (Li et 
al., 2018; Cao et al., 2019; Li et al., 2022). ML models are 
increasingly applied in hydrological, ecological, and 
aquaculture contexts, including DO estimation. 

Numerous studies have demonstrated the 
predictive capabilities of ML approaches such as support 
vector machines (SVM), decision trees, neural networks, 
and ensemble models for DO modeling. However, most 
of these applications have focused on natural aquatic 
systems, such as rivers, lakes, and reservoirs (Ahmed et 
al., 2019; Ross & Stock, 2019; Nasir et al., 2022). In 
comparison, studies addressing DO prediction in 
aquaculture environments are relatively scarce. This gap 
is critical, as aquaculture systems often exhibit greater 
variability due to factors like feeding schedules, stocking 
densities, and site-specific management practices. 
Additionally, DO requirements are species-specific. For 
example, cold-water fish such as rainbow trout require 
a minimum of 6 mg/L DO to support normal 
physiological functions, tissue repair, growth, and 
reproduction (Svobodova et al., 1993; Mallya, 2007; 
Abdel-Tawwab et al., 2019). As such, predictive models 
for DO should be tailored to the specific physiological 
and environmental needs of the cultured species. 

While recent ML-based studies have addressed DO 
prediction for species such as sea bream 
(Chatziantoniou et al., 2022), sea bass (Guo et al., 2022), 
shrimp (Jasmin et al., 2022), and crabs (Chen et al., 2018; 
Li et al., 2021), no published research to date has 
focused on developing ML models specifically for DO 
prediction in intensive rainbow trout farming. Given the 
species’ sensitivity to DO fluctuations, the economic 
significance of trout aquaculture, and the complexity of 
intensive farming systems, a targeted modeling 
approach is clearly warranted. 

Accordingly, the objective of this study is to 
evaluate and compare the performance of four machine 
learning algorithms, Multivariate Adaptive Regression 
Splines (MARS), Random Forest (RF), Extreme Gradient 
Boosting (XGBoost), and Averaged Neural Networks 
(avNNet) for predicting dissolved oxygen concentration 
in rainbow trout aquaculture systems. The models 
utilize multiple water quality parameters, including 
temperature, pH, turbidity, and conductivity, as input 
features. The analysis is based on a dataset comprising 

120 observations collected from 12 commercial rainbow 
trout farms located across Türkiye. Ultimately, the study 
aims to identify the most suitable ML model for accurate 
and practical DO prediction, thereby supporting 
improved water quality monitoring and enhancing both 
fish health and farm productivity in intensive 
aquaculture. 

 

Materials and Methods 
 

Study Area and Data Collection 
 

This study was conducted in 12 land-based 
rainbow trout farms of different capacities (10-250 
tons/year) operating in Gürpınar and Çatak districts of 
Van province in Türkiye (Figure 1). 

While selecting the enterprises, districts in Van 
province that intensively produce rainbow trout were 
selected. At the same time, different factors such as 
different water quality and climate characteristics in 
these districts, time taken to reach table weight, and use 
of spring or stream water were taken into consideration. 

Data were collected using a purposive sampling 
method, aiming to capture diverse production 
conditions across the study region. Water quality data 
were obtained from surface water resources utilized by 
these facilities and are based on a previously published 
dataset (Demir, 2019). The study utilized water quality 
measurements and dissolved oxygen (DO) 
concentrations collected over a five-month period from 
March to July 2016, covering the peak growing season 
for rainbow trout in the region. The dataset comprised 
120 observations across 12 variables: suspended solids, 
electrical conductivity, turbidity, nitrate, nitrite, 
ammonia, ammonium, orthophosphate, pH, water 
temperature, dissolved oxygen, and total phosphorus. 

Water temperature, DO, pH and EI were 
determined by on-site measurements at the sampling 
points determined in the study. For measurements of 
AKM, turbidity, nitrate, nitrite, ammonia, ammonium, 
orthophosphate, and phosphorus, water samples were 
taken with 1-1.5 liter PET bottles and measurements 
were made in Van Yüzüncü Yıl University, Faculty of 
Fisheries Water Quality Laboratory and Van Provincial 
Directorate of Agriculture and Forestry Mobile 
Laboratory. Detailed measurement methods of water 
samples collected in the study are listed in Table 1. In 
addition, the average values of the data regarding the 
water quality parameters used in the study are given in 
Table 2. 

 
Machine Learning Estimation Models 
 

The dataset was divided into training (80%) and 
testing (20%). The training data numerical predictors 
were then preprocessed, which included feature 
filtering, normalization, centering, and scaling. Four 
different machine learning methods were used to 
estimate dissolved oxygen using the other variables as 
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Figure 1. Location map of the study area. 

 
Table 1. Measurement methods for each water quality parameter 

Data Measurement Methods 

Water temperature  
Dissolved oxygen  
pH 
Electrical conductivity 

 
Multimeter device (HACH HQ 40d ve YSI Pro 20) 

Turbidity Turbiditimeter (HACH 2100 Q) 
Suspended solids Photometric method (HACH DR 2010 ve 5000 model spectrophotometer) 
Nitrate Cadmium Reduction method (HACH DR 5000 UV/VIS model spectrophotometer) 
Nitrite Diazotization method (HACH DR 5000 UV/VIS model spectrophotometer) 
Ammonium  
Ammonia 

Nessler method (HACH DR LANGE 5000 UV/VIS model spectrophotometer) 

Total phosphorus  
Orthophosphate 

PhosVer 3 (Ascorbic Acid) method (HACH DR 5000 UV/VIS model spectrophotometer) 

 
 
 

Table 2. Descriptive statistics of the water quality data 

Water quality variable Minimum Maximum Avg±sd 

Dissolved oxygen (mg/L) 8.00 15.00 10.91±1.04 
Water temperature (°C) 8.20 19.30 11.64±3.47 
pH 7.73 8.90 8.28±0.26 
Electrical conductivity (μS/cm) 231.40 294.80 266.62±15.50 
Ammonia (mg/L) 0.12 0.40 0.20±0.05 
Ammonium (mg/L) 0.13 0.43 0.21±0.05 
Nitrite (mg/L)  0.01 0.04 0.02±0.01 
Nitrate (mg/L) 0.13 1.10 0.47±0.19 
Total phosphorus (mg/L) 0.09 0.49 0.24±0.09 
Orthophosphate (mg/L) 0.03 0.19 0.089±0.03 
Turbidity (NTU) 0.27 2.52 1.19±0.45 
Suspended solids (mg/L) 13.75 27.50 17.03±2.65 
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predictors. The first model was Multivariate Adaptive 
Regression Splines (MARS), which is a non-parametric 
regression technique that builds a flexible model by 
partitioning the input space into regions and fitting a 
linear regression model to each region (Friedman, 
1991). It is often used in situations where there are 
complex, non-linear relationships between the 
predictors and the target variable and where traditional 
linear regression models may not be appropriate. They 
can be particularly useful when there are interactions 
between the predictor variables that are difficult to 
model using traditional linear or polynomial regression 
techniques (Kuhn and Johnson, 2013). The second 
model was Random Forest (RF), which is an ensemble 
learning method for classification and regression tasks. 
It works by building multiple decision trees on different 
subsets of the input data and combining their 
predictions to make a final prediction (Breiman, 2001). 
The third model was Extreme Gradient Boosting 
(XGBoost), which is a machine learning algorithm that is 
used for supervised learning tasks such as classification, 
regression, and ranking. It is an extension of the gradient 
boosting algorithm that is designed to improve the 
speed and accuracy of the model (Chen and Guestrin, 
2016). The fourth model was model-averaged neural 
networks (avNNet) which is a type of ensemble method 
for building predictive models using neural networks. 
The algorithm combines multiple neural network 
models by averaging their predictions, thus reducing the 
variance of the final model and improving its 
generalization ability (Kuhn and Johnson, 2013). Highly 
correlated variables can introduce multicollinearity, 
which can cause the model to overestimate the 
importance of certain variables or produce unstable 
estimates of the model coefficients (Chan et al., 2022). 
Therefore, before the application of machine learning 
(ML) models, highly correlated variables were 
eliminated in order to improve the performance of the 
models. The correlation between predictor variables 

(Figure 2) were extracted using ggstatsplot R package 
(Patil, 2021). Models were then implemented using the 
caret R package (Kuhn, 2022). A 10-folds and repeated 
10-times cross-validation method and the tuneGrid 
argument were used to specify the hyperparameter 
tuning grid for the models. Variable importance is a 
measure used to determine the impact of input 
variables on the output variable in a machine learning 
model. It can be used to understand the significance of 
each feature in the model and help with feature 
selection, model interpretation, and improving model 
performance (Boehmke and Greenwell, 2019). The VIP R 
package (Greenwell et al., 2020) was used to extract 
variable importance for each variable. Models’ 
performance were evaluated by Mean Absolute Error 
(MAE), Root Mean Squared Error (RMSE), and Mean 
Absolute Percent Error (MAPE), which were generated 
using the Metrics R package (Hamner and Frasco, 2018). 
Analysis was performed using the R programming 
language, version 4.2.2 (RCoreTeam, 2022). 
 

Results 
 

Table 3 presents the performance metrics of four 
machine learning algorithms, MARS, avNNet, RF, and 
XGBoost, used to predict dissolved oxygen (DO) 
concentration in intensive rainbow trout culture based 
on multiple water quality parameters. All models 
produced reasonably accurate estimates, but XGBoost 
achieved the best overall performance, with the lowest 
Mean Absolute Error (MAE=0.44) and the highest 
coefficient of determination (R²=0.78). In comparison, 
RF achieved an MAE of 0.54 and R² of 0.65; avNNet, an 
MAE of 0.69 and R² of 0.45; and MARS, an MAE of 0.72 
and R² of 0.52. These results indicate that ensemble-
based and nonlinear learning approaches, particularly 
XGBoost, were more effective in modeling the complex 
interactions among water quality variables. 

 

Figure 2. Correlation coefficient between variables, for (A) the entire dataset, and (B) the correlations after removing highly 
correlated variables. 
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Table 4 further supports this finding, showing 
statistically significant differences in MAE between 
XGBoost and the other models. Specifically, XGBoost 
outperformed MARS (P=0.017), avNNet (P<0.001), and 
RF (P=0.001), confirming its superior predictive accuracy 
in this context. 

Figure 3 illustrates the variable importance scores 
assigned by each model. Temperature and pH 
consistently emerged as the most influential variables 
across all four algorithms, underscoring their critical role 
in determining DO concentration. Electrical conductivity 
was also identified as a key predictor, ranking third in 
three of the models and fourth in XGBoost. Meanwhile, 
the importance rankings for suspended solids, turbidity, 
ammonia, and orthophosphate varied across models, 
suggesting algorithm-specific sensitivities. Nitrite and 
nitrate consistently ranked lowest in importance, 
indicating minimal predictive contribution to DO 
estimation in this dataset. Overall, the rankings showed 
broad consistency, highlighting temperature, pH, and 
electrical conductivity as dominant predictors across 
models. 

Figure 4 compares the predicted DO values with 
observed measurements. While the mean predicted 
values for all models were slightly lower than the 
observed average (10,93 mg/L), the differences were 
not statistically significant (P= 0.92). This indicates that 
the models were able to approximate the actual DO 
values with a high degree of accuracy. However, it is 
important to note that although average prediction 
errors were low, the models may still be affected by 
occasional outliers or non-systematic deviations. For 
example, in some individual cases, the prediction error 
exceeded ±1 mg/L. These outliers, though infrequent, 
could be significant in real-world aquaculture 
operations where precise DO control is critical. 
Additionally, the absence of seasonal variation in the 
dataset may limit the models' generalizability to other 
production periods or environmental conditions. These 
limitations suggest that future studies should explore 
error distribution, sensitivity analyses, and potentially 
incorporate temporal and environmental variability to 
enhance model robustness and practical applicability. 

Discussion and Conclusion 
 

Machine learning algorithms have shown 
promising results for predicting water quality 
parameters in aquaculture (Chen et al., 2018; 
Chatziantoniou et al., 2022; Jiang and Yan 2022). In this 
study, we compared the performance of four machine 
learning algorithms for predicting dissolved oxygen 
concentration in rainbow trout farming. The results of 
this our study demonstrate the potential of machine 
learning algorithms in predicting dissolved oxygen 
concentration in rainbow trout culture based on water 
quality parameters. The results showed that all 
algorithms provided accurate estimates of dissolved 
oxygen concentration. The XGBoost algorithm, in 
particular, showed the highest accuracy predictive 
performance compared to other algorithms. This could 
be attributed to its ability to handle complex 
interactions between variables and its ability to handle 
missing data (Polikar., 2012; Uddin et al., 2023). In 
addition, the incorporation of multiple water quality 
parameters into the models enhanced the accuracy of 
the predictions. After XGBoost, the algorithms with the 
highest performance were RF, avNNet, and MARS. The 
findings of this study suggest that the XGBoost algorithm 
could be a useful instrument for predicting the 
concentration of dissolved oxygen in rainbow trout 
culture and enhancing fish health and production.  

Our findings are consistent with other studies that 
demonstrate XGBoost's superior performance in 
predicting water quality parameters compared to 
alternative models. For instance, Khoi et al. (2022) 
evaluated twelve ML models and found extreme 
gradient boosting (XGBoost) to have the highest 
accuracy (R2=0.989 and RMSE=0.107) in predicting the 
Water Quality Index. Similarly, in previous studies 
conducted to predict water quality using classification 
methods, it was found that the XGBoost model 
outperformed other models in terms of performance.  
Yusri et al. (2022) reported that XGBoost outperformed 
Support Vector Machine (SVM) in water quality 
prediction, with an accuracy of 94% compared to SVM's 
67%. XGBoost also exhibited a lower misclassification 

Table 3. Performance matrics of the ML models 

Model R2 MAE RMSE MAPE 
MARS 0.52 0.72 0.87 0.07 
avNNet 0.45 0.69 0.84 0.06 
RF 0.65 0.54 0.70 0.05 
XGBoost 0.78 0.44 0.58 0.04 

R2:Coefficient of Determination, MAE: Mean Absolute Error, RMSE:Root Mean Squared Error, MAPE:Mean Absolute Percentage Error. 

 
 
 

Table 4. Compare performance of the models based on MAE (p-values) 

Model MARS avNNet RF XGBoost 
MARS *** 2.766e-09 0.06547 0.01713 
avNNet 2.766e-09 *** < 2.2e-16 3.418e-09 
RF 0.06547 < 2.2e-16 *** 5.047e-10 
XGBoost 0.01713 3.418e-09 5.047e-10 *** 

 



 
Turkish Journal of Fisheries & Aquatic Sciences TRJFAS27622 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

error (6% vs. 33%) and superior results in 5-fold 
validation. Another study by Uddin et al. (2023) 
evaluated six commonly used algorithms (XGBoost, 
SVM, ANN, NB, KNN and DT) for water quality 
prediction, with XGBoost and KNN achieving the highest 
accuracy (99.9% and 100% correct, respectively). 

Furthermore, some studies have reported that 
hybrid models combining the XGBoost algorithm with 
other algorithms also show good performance. In a 
study by Wu et al. (2021), a novel hybrid model 
(XGBoost-ISSA-LSTM) was proposed to predict dissolved 
oxygen (DO) levels in river crab pond culture. The hybrid 
model demonstrated remarkable accuracy, with a 1-
hour prediction having an RMSE of 0.5571, MAE of 
0.2572, and R2 of 0.9276. Additionally, the 24-hour 
prediction maintained strong performance, with an 
RMSE of 0.6310, MAE of 0.4562, and R2 of 0.9082, 
highlighting the effectiveness of the XGBoost-ISSA-LSTM 
hybrid model in accurately predicting DO levels in river 
crab pond culture. 

Lu and Ma (2020) introduced two hybrid decision 
tree-based models, CEEMDAN-XGBoost and CEEMDAN-
RF, with the smallest average MAPEs (3.90% and 3.71%), 
indicating superior overall prediction performance for 
predicting six water quality indicators, including water 

temperature, dissolved oxygen, pH value, specific 
conductance, turbidity, and fluorescent dissolved 
organic matter. Similarly, Tiyasha et al., (2021) 
suggested four tree-based predictive models: RF, 
Ranger, cForest, and XGBoost, compared with 
algorithms MARS and Boruta-GA. Additionally, four 
feature selector techniques (GA, Boruta, XGBoost, and 
MARS) were employed to determine the optimal 
independent variables for DO forecasting. The study 
showed good performance for all predictive approaches 
based on features selected by the algorithms MARS and 
XGBoost. Moreover, the XGBoost predictive technique 
exhibited the best performance when combined with 
MARS and XGBoost algorithms in terms of various 
statistical criteria. 

In our study, MARS had the worst performance, 
followed by avNNet and RF. Yet, other research has 
shown these algorithms to be effective in predicting 
dissolved oxygen concentration. For instance, In a 2018 
study by Heddam and Kisi, the MARS algorithm was 
found to outperform both Least Squares Support Vector 
Machine (LSSVM) and M5 Model Tree (M5T) in 
predicting DO concentration from water quality 
parameters, achieving approximately 8.22% to 11.05% 
lower RMSE and 23.50% to 25.05% lower MAE values. 

 

Figure 3. Variable importance for the machine learning models. 
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Similarly, Jasmin et al. (2022) predicted DO and biofloc 
amounts in shrimp culture using Random Forest, 
Adaboost, and Deep Neural Networks. They found that 
the RF outperformed the others, with R²=0.7381, 
MAE=0.187, and RMSE=0.235. 

The consistent identification of temperature and 
pH as the most important predictors of dissolved oxygen 
(DO) concentration across all four models (MARS, 
avNNET, RF, and XGBoost) highlights their critical role in 
regulating aquatic oxygen dynamics. Temperature 
significantly influences the solubility of gases in water; 
as temperature increases, the solubility of oxygen 
decreases, thereby lowering DO availability (Wetzel, 
2001; Boyd & Tucker, 2012). Additionally, higher 
temperatures intensify microbial metabolism and 
biological oxygen demand, accelerating DO depletion 
(Chapra, 2008). pH, on the other hand, can regulate 
microbial processes and chemical equilibria, such as the 

activity of nitrifying bacteria and the balance between 
ammonium and ammonia, thereby indirectly increasing 
or decreasing DO levels (El-Gohary et al., 1995; 
Tchobanoglous et al., 2003). Although the machine 
learning models used in this study are data-driven and 
non-mechanistic, they are capable of capturing and 
reflecting complex interactions among input variables. 
Ensemble tree-based algorithms such as Random Forest 
and XGBoost are particularly well-known for their ability 
to learn nonlinear and high-order interactions between 
features (Hastie et al., 2009; Chen & Guestrin, 2016). 
The high importance scores assigned to both pH and 
temperature suggest that these models may implicitly 
account not only for the individual effects of these 
variables but also for their joint influence on DO 
dynamics. Such synergistic or antagonistic interactions 
are especially relevant in aquaculture systems, where 
environmental variables often fluctuate simultaneously. 

 

Figure 4. Differences between original (observed) dissolved oxygen concentration andthe predicted dissolved oxygen 
concentration obtained from different machine learning models. 
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To further interpret these interactions, model-agnostic 
tools such as Partial Dependence Plots (PDPs), 
Accumulated Local Effect (ALE) plots, or SHAP (SHapley 
Additive Explanations) values can be employed to 
quantify and visualize the effects of individual predictors 
and their combinations on model outcomes (Lundberg 
& Lee, 2017; Christoph, 2020). These tools can enhance 
the interpretability of complex models and support 
more informed decision-making in aquaculture 
management. 

In conclusion, the present study examined the 
performance of four machine learning algorithms in 
predicting dissolved oxygen concentrations in intensive 
rainbow trout culture based on water quality 
parameters. The results indicated that all four 
algorithms produced accurate estimates of dissolved 
oxygen levels, with the XGBoost algorithm 
demonstrating the highest performance. These findings 
suggest that machine learning algorithms hold great 
promise as valuable tools for predicting dissolved 
oxygen levels in rainbow trout culture, which in turn 
could have significant implications for improving fish 
health and production in aquaculture systems. The 
study's results also align with previous research in the 
field, which has demonstrated the superiority of 
XGBoost and other machine learning algorithms in 
predicting water quality parameters. The ability of 
XGBoost to handle complex interactions between 
variables and address missing data may explain its 
superior performance in this context. Additionally, the 
incorporation of multiple water quality parameters into 
the models further enhanced the accuracy of the 
predictions. Moreover, the results highlighted the 
potential of hybrid models combining XGBoost with 
other algorithms to achieve even better performance in 
certain applications. It is important to note that while 
XGBoost exhibited the highest performance in this 
study, other algorithms, such as MARS, and Random 
Forest, showed promising results as well, in line with 
previous research findings. Future research should 
explore the applicability of these machine learning 
algorithms in diverse aquaculture systems and 
investigate the potential of additional algorithms for 
predicting dissolved oxygen levels in aquaculture. 
Overall, this study contributes to the growing body of 
literature supporting the use of machine learning in 
aquaculture and provides valuable insights into 
optimizing dissolved oxygen prediction models for 
sustainable fish farming practices. 
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