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Abstract 
 

Fish species can be identified based on the analysis of otolith morphological indices. 
Common methods used to determine populations or identify species based on otolith 
morphology analysis include Basic Dimension Parameters (BDP), Shape Indices (ShI), 
and Elliptic Fourier Descriptors (EFD) indices through various statistical techniques. In 
this paper, we introduce a novel method to distinguish between otolith morphological 
groups to identify differences among five commercially important fish species in 
Vietnam—Sillago sihama, Siganus canaliculatus, Selaroides leptolepis, Johnius 
carouna, and Otolithes ruber—based on 188 left otolith samples. This method involves 
the automated calculation of distances from the otolith center to 100 points along its 
contour, implemented through a Python-based image processing pipeline. This is the 
first comparison between three otolith morphology analysis methods, including two 
conventional methods and a new method. The results of this study demonstrated that 
the center-to-contour distance index is effective for classifying otolith morphology 
with the aim of identifying fish species. Additionally, the study results reaffirm that 
otolith morphological analysis is an effective tool for identifying fish species and 
distinguishing otolith morphological differences among the five species. 

 

Introduction 
 

Otoliths, also known as ear stones, are calcium 
carbonate structures found in the inner ears of bony 
fishes, excluding lampreys. These structures play a 
crucial role in balance and hearing. Each fish has three 
pairs of otoliths: two smaller pairs (lapilli and asteriscii) 
and one larger pair (the sagitta) (Schulz-Mirbach et al., 
2014; Santos et al., 2017). Research indicates that the 
shape of sagittal otoliths is associated with swimming 
capabilities (Volpedo & Echeverra, 2003) and stock 
distribution (Lombarte & Cruz, 2007; Tuset et al., 2016). 
The morphometric properties of otoliths are extensively 
used for species differentiation and stock identification 
(Stransky et al., 2008; Bani et al., 2013). Otoliths also 

preserve records of individual fish growth and 
development (Campana et al., 1985; Hosseini-Shekarabi 
et al., 2014; Yedier, 2021). Numerous studies have 
utilized sagittal otolith shapes to identify species, 
populations, and stocks (Osman et al., 2020; 
Ghanbarifardi & Zarei, 2021). Variations in sagittal 
shapes often correlate with the biological characteristics 
of species and fish stocks (Campana & Casselman, 1993; 
Vu & Kartavsev, 2020). In recent years, otolith 
morphology analysis has been employed to distinguish 
between species or populations (He et al., 2017; Vu & 
Kartavsev, 2020). The analysis of sagitta size and shape 
is particularly valuable for differentiating fish species 
and identifying fish populations. Besides conventional 
species identification methods like morphological 
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analysis and DNA sequencing, otolith morphology-based 
identification is especially useful for reconstructing 
historical fish species composition in archaeological 
studies (Lin et al., 2019) and for investigating the feeding 
habits of piscivorous animals, thereby enhancing our 
understanding of marine food webs, particularly at 
higher trophic levels (Dürr & González, 2002; Garcia-
Rodriguez et al., 2011). Additionally, otoliths have the 
advantage of long-term sample preservation, requiring 
minimal space and simple storage conditions. 

Many authors have identified species using 
common indices such as basic dimension parameter - 
BDP (length, width, perimeter, area), shape indices – ShI 
(circularity, roundness, rectangularity, form factor, 
aspect ratio, and ellipticity), and EFD, which are 
standard methods for otolith shape analysis (Burke et 
al., 2009; Mapp et al., 2017; He et al., 2017; Vu & 
Kartavsev, 2020). A recent study employed BDP, ShI, and 
EFD indices of otoliths as tools to distinguish between 
two species, Hypomesus japonicus and H. nipponensis 
(Vu & Kartavsev, 2020). The analysis of otolith shape has 
also been used to determine the stock structure of 
European anchovy (Engraulis encrasicolus) along the 
Tunisian coast, identifying three distinct stock units of E. 
encrasicolus, with significant implications for fisheries 
management. By analyzing BDP and ShI indices using 
various statistical methods, numerous studies have 
assessed the morphological differences in otoliths 
among fish species. These analyses are used to delineate 
fish stocks (Agüera & Brophy, 2011; Paul et al., 2013; 
Ferhani et al., 2021). 

However, these methods have their own 
advantages and disadvantages in identifying and 
observing differences in otolith morphology, with a 
certain rate of misidentification still present (Lin & Al-
Abdulkader, 2019). Therefore, the development of new 
methods, especially shape indices, is necessary to 
improve accuracy. In this paper, we introduce a novel 
method using the distance from the center to points on 
the otolith contour (DftC) index, implemented in the 
Python programming language, for species 
identification. This method will be compared with 
currently prevalent methods. The samples used in this 
study include five common species from the coastal 
waters around Soncha Island (Hue City). These species 
frequently appear in natural habitats and are 
commercially significant fish used for human 
consumption and as prey for piscivorous animals in the 
nearby forest. The biology and ecology of the five fish 
species under investigation highlight their varied growth 
patterns and ecological roles within coastal and 
estuarine environments. Sillago sihama, a species 
commonly found in coastal waters, estuaries, and 
lagoons, reaches sexual maturity at a total length of 
approximately 12 cm, with moderate growth and a 
lifespan of up to 4 years. This species inhabits sandy 
areas in sea inlets, along beaches, sandbars, mangrove 
creeks. Typically forming schools, S. sihama exhibits a 
unique behavior where adults bury themselves in the 

sand when disturbed, enhancing their ability to evade 
predators. As a benthic feeder, it primarily consumes 
polychaete worms, small prawns (genus Penaeus), 
shrimps, and amphipods. This benthic shoaling species 
contributes significantly to nutrient cycling within these 
habitats and serves as an essential prey item for larger 
marine species.  Selaroides leptolepis inhabits shallow 
coastal waters, including coral reefs and the inshore 
waters of the continental shelf. The species is associated 
with seagrass beds and feeds mainly on plankton, such 
as ostracods, gastropods, euphausiids, and small 
juvenile fishes. Being a diurnal feeder, it subsists on a 
variety of small marine organisms, forming schools that 
serve as key prey for larger marine predators. Reaching 
sexual maturity within one year at a length of about 12 
cm, this species often resides in soft substrates, making 
it a schooling species that plays a significant ecological 
role in the marine food web. Siganus canaliculatus 
inhabits shallow coastal waters, often associated with 
coral reefs and seagrass beds. This herbivorous species 
primarily consumes algae and seagrass, occasionally 
feeding on incidental invertebrates while browsing. It is 
a shoaling species, playing a crucial role in maintaining 
coral reef balance by controlling algal growth. With 
rapid juvenile growth, it reaches maturity at around 12 
cm, ensuring early reproductive readiness (Froese & 
Pauly, 2022). Otolithes ruber and Johnius carouna are 
important carnivorous species in estuarine and coastal 
ecosystems, with moderate growth rates. O. ruber is 
found on the continental shelf, inhabiting subtidal edges 
of mud flats, sheltered bays, and estuaries. This 
generalist carnivore preys on shrimp, small fish, and 
squids. It reaches maturity at approximately 16 cm and 
is a mid-level predator in these environments. On the 
other hand, J. carouna, a widely distributed species in 
shallow coastal waters and estuaries, typically reaches 
maturity at 15.3 cm (Sawusdee & Rattanara, 2021; 
Froese & Pauly, 2022). This species primarily feeds on 
crustaceans, small fish, worms, and insects, playing a 
significant role in nutrient cycling within the benthic 
community. Together, these species represent a range 
of trophic roles and growth patterns essential to the 
biodiversity and function of tropical marine ecosystems. 
While various methods have been developed to quantify 
otolith shape, most rely on general outline descriptors 
or frequency-domain transformations. In contrast, 
approaches that compute fixed-point radial distances 
from the otolith centroid are rare in the literature. This 
gap underscores the novelty of our study, which 
introduces and systematically evaluates a center-to-
contour distance index (DftC) as a shape descriptor. In 
addition to its conceptual simplicity and reproducibility, 
the DftC index offers high potential for integration with 
machine learning and deep learning models. Because 
the distance values are structured, fixed-length, and 
continuous, they can be directly used as input features 
in supervised classification models, neural networks, or 
feature selection pipelines. Therefore, this approach not 
only enables conventional statistical evaluation but also 
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paves the way for scalable, automated fish species 
identification frameworks based on otolith morphology. 
 

Materials and Methods 
 

Sample Collection 
 

Individuals were captured by trawling and 
purchased from fishing areas in Soncha (Figure 1), with 
samples collected in May and June 2024. All individuals 
used were of adult size according to FishBase (2022). A 
total of 188 left otoliths were collected (Figure 1), 
representing five fish species. The number of individuals 
per species and their corresponding standard lengths 
are detailed in Table 1. 

 
Image Acquisition and Preprocessing 
 

Each otolith was placed against a black background 
(Table 1). The left sagitta (hereafter referred to as 
otolith) was photographed using an Olympus SZ61 zoom 
stereo microscope. Digital images of the otoliths were 
captured under the stereomicroscope using Olympus 
CellSens (version 2.2) with an SC180 camera and saved 
in JPG format. 

Basic Dimension Parameters (BDP) and Shape Indices 
(ShI) 
 

The characteristics of the otoliths were measured 
and analyzed based on ShIs. To determine the 
morphometric characteristics of the otoliths, four basic 
dimensional parameters, namely area (A), perimeter (P), 
otolith width (OW), and otolith length (OL), were 
measured using Python (version 3.9). Six common ShIs 
were calculated using the ratios of OW, OL, A, and P 
(Agüera & Brophy 2011) as follows: aspect ratio = 
OL/OW; ellipticity = (OL − OW) / (OL + OW); circularity = 
P/A2; rectangularity = A/(OL × OW); roundness = 
4A/πOL2; and form factor = 4πA/P2 (Agüera & Brophy, 
2011; He et al., 2017). 
 
Elliptic Fourier Descriptors (EFD) 
 

Fourier analysis was conducted using the pyefd 
package (Henrik, 2020), following the formula proposed 
by Kuhl & Giardina (1982). Specifically, the 
elliptic_fourier_descriptors function was employed with 
a default order of 16, generating 64 coefficients (16 
orders × 4 coefficients per order). These coefficients 
were then used in Linear Discriminant Analysis (LDA) to 

 

Figure 1. Sampling locations of otolith. The blue stars indicate specific fishing points. 
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assess data clustering. The command coeffs = 
elliptic_fourier_descriptors (contour, o rder=16, 
normalize=False) was used to compute these 
descriptors. 
 
Proposed Method: Distance from Center to Contour 
(DftC) 
 

Identify the center of the otoliths and calculate the 
distance from the center to points on the: 

 
# Compute spatial moments of the contour to 

determine its centroid 
 

M = cv2.moments(max_contour) 
 
if M['m00'] != 0: 
 
cx = int(M['m10'] / M['m00']) 
cy = int(M['m01'] / M['m00']) 
 
# Compute the Euclidean distance from the 

centroid to each point on the contour 
 

distances = np.sqrt((max_contour[:, 0, 0] - cx) ** 2 + 
(max_contour[:, 0, 1] - cy) ** 2) 

 
The center of the otoliths was identified, and the 

distance from the center to 100 points on the contour 
was calculated, resulting in a set of 100 distances. This 
set of distances was subsequently used to compare 
otolith differences among species using MANOVA and 
LDA analyses. 

Data Analysis 
 
Data Processing in Python 
 

The otolith image was converted to grayscale, and 
the edge was detected using the Canny function. The 
largest contour was selected from the detected edges to 
reduce noise and ensure consistency. Subsequently, 
basic dimensional parameters (BDPs) were extracted in 
pixel units, including OL, OW, P, and A: 

 

# Load image and extract contour using OpenCV 
image = cv2.imread(image_path, 

cv2.IMREAD_GRAYSCALE) 
 

edges = cv2.Canny(image, 100, 300) 
 

contours, _ = cv2.findContours(edges, cv2.RETR_TREE, 
cv2.CHAIN_APPROX_SIMPLE) 

 

# Select the largest contour to reduce noise 
 

max_contour = max (contours, key=cv2.contourArea, 
default=None) 

 

# Compute basic dimensional parameters (BDPs) 
 

if max_contour is not None: 
 

x, y, width, height = cv2.boundingRect(max_contour) 
OL = max (width, height) 
OW = min (width, height) 
P = cv2.arcLength(max_contour, True) 
A = cv2.contourArea(max_contour) 

Table 1. Information on the otolith samples of the 5 species collected for the study 

Species Name Species Code Image Sample Size Size of the fish 

Order: Eupercaria Family:  
Sillaginidae  
Sillago sihama (Fabricius, 1775) 

SSI 

 

29 16 - 19 cm 

Order: Carangiformes  
Family: Carangidae  
Selaroides leptolepis (Cuvier, 1833) 

CCV 

 

50 12 – 16 cm 

Order: Acanthriformes  
Family: Siganidae  
Siganus canaliculatus (Park, 1797) 

DIA 

 

30 18 – 25 cm 

Order:  Eupercaria  
Family: Sciaenidae   
Otolithes ruber (Bloch & Schneider, 1801) 

XOR 

 

29 20 -25 cm 

Order:  Eupercaria  
Family: Sciaenidae  
Johnius carouna (Cuvier, 1830) 

CDD 

 

50 16 – 19 cm 
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The Libraries of Python Used In the Analysis Include 
 

The values used for statistical analysis were tested 
for homogeneity of variance and normal distribution 
using the statsmodels package (Seabold and Perktold, 
2010). The packages include os for system operations 
(Python Software Foundation, 2024), numpy 
(abbreviated as np) for numerical computations (Harris 
et al., 2020), and cv2 for image processing (Bradski, 
2000). For data manipulation and analysis, pandas 
(abbreviated as pd) (McKinney, 2010) and seaborn 
(abbreviated as sns) (Waskom, 2021) are used to handle 
and visualize data. The library matplotlib.pyplot 
(abbreviated as plt) (Hunter, 2007) is also used for 
plotting. Additionally, the code employs 
LinearDiscriminantAnalysis (LDA) from 
sklearn.discriminant_analysis and LabelEncoder from 
sklearn.preprocessing for classification and label 
encoding, along with confusion_matrix from 
sklearn.metrics to evaluate results (Pedregosa et al., 
2011). MANOVA from statsmodels.multivariate.manova 
support multivariate statistical analysis (Seabold & 
Perktold, 2010), while pingouin (pg) provides additional 
statistical tools (Vallat, 2018). 

Results 
 

Determination and Extraction of Contour Results 
 

Figure 2 shows the contours of all 188 otolith 
samples from five species that have been well defined, 
the contours are unique and closely fit the objects, with 
no noisy contours. The determined contours are unique 
to each object. Based on these identified contours, data 
on BDP-ShI, EFD, and DftC will be extracted for each 
species group for comparison. 

 
Manova Analysis of Morphological Differences in 
Otoliths among Five Fish Species Using Bdp, Shl, Efd, 
and DftC 
 

The MANOVA (Multivariate Analysis of Variance) 
test is a statistical method used to examine whether 
there are significant differences across multiple 
dependent variables among groups, here, different fish 
species. By analyzing various morphological 
characteristics of otoliths together, MANOVA can 
identify differences that may be linked to species. This 

 

Figure 2. Results for the determination of otolith contours (contours outlined in purple). 
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method allows us to explore potential variations in 
otolith morphology across species based on indices such 
as BDP, ShI, EFD, and DftC. The results in Table 2 outline 
these morphological differences among five fish species, 
indicating statistical significance across these indices. 

The MANOVA results for morphological otolith 
characteristics based on BDP, ShI, EFD, and DftC indices 
across five fish species consistently indicate statistically 
significant effects of the species variable on otolith 
metrics. Specifically, the analysis of Length, Width, 
Perimeter, and Area (BDP) yields low Wilks' lambda 
(0.027), high Pillai's trace (0.972), Hotelling-Lawley trace 
(35.872), and Roy's greatest root (35.872), all with F 
values of 1614.28 and P<0.001, confirming significant 
interspecies differences. This trend is reinforced in the 
between-group analysis, where Wilks' lambda (0.01) 
and other high F values (all P<0.001) further underscore 
substantial shape differences across species. Similarly, 
the ShI shape indices (including aspect ratio, ellipticity, 
circularity, rectangularity, roundness, and form factor) 
exhibit strong variance explained by species, with the 
Intercept statistics showing Wilks' lambda at 0.003, 
Pillai’s trace at 0.996, and both Hotelling-Lawley and 
Roy’s greatest root at 315.886, all with extremely high F 
values (9371.29) and P<0.001. Between-group analysis 

here also confirms pronounced species differences, with 
Wilks' lambda at 0.0115 and significant p-values across 
all metrics. The EFDs follow this pattern, with Wilks' 
lambda at 0.01, Pillai’s trace at 0.99, and both Hotelling-
Lawley and Roy’s greatest root at 93.68, all indicating a 
significant model with F values of 188.89 and P<0.001, 
and with between-group results (Wilks’ lambda at 
0.001) reinforcing substantial morphological variation 
between species. Finally, the DftC results demonstrate a 
similarly strong species impact on otolith shape, as 
indicated by Wilks' lambda (0.026), Pillai's trace (0.974), 
Hotelling-Lawley trace (37.655), and Roy's greatest root 
(37.655), each with an F value of 31.63 and P<0.001. 
Between-group statistics, with a near-zero Wilks' 
lambda (0.0001), confirm significant species distinctions 
(Table 2). Together, these MANOVA findings affirm 
statistically significant morphological differences in 
otolith shape among all five species. However, while 
MANOVA substantiates these overall differences, it 
does not reveal the extent of variation between 
populations or the potential for misclassification across 
groups. Thus, further analysis using LDA plots and 
confusion matrices is necessary to assess clustering 
precision and evaluate inter-population 
misclassification. 

Table 2. MANOVA results for morphological otoliths based on BDP, ShI, EFD, DftC of five fish species. 

  Statistic Value Num DF Den DF F Value Pr>F 

BDP 

Intercept 

Wilks' lambda 0.027 4 180 1614.28 0.001 
Pillai's trace 0.972 4 180 1614.28 0.001 
Hotelling-Lawley trace 35.872 4 180 1614.28 0.001 
Roy's greatest root 35.872 4 180 1614.28 0.001 

Between-group 

Wilks' lambda 0.01 16 550.55 118.85 0.001 
Pillai's trace 1.6 16 732 30.53 0.001 
Hotelling-Lawley trace 43.64 16 354.04 488.31 0.001 
Roy's greatest root 42.61 4 183 1949.63 0.001 

ShI 

Intercept 

Wilks' lambda 0.003 6 178 9371.29 0.001 
Pillai's trace 0.996 6 178 9371.29 0.001 
Hotelling-Lawley trace 315.886 6 178 9371.29 0.001 
Roy's greatest root 315.886 6 178 9371.29 0.001 

Between-group 

Wilks' lambda 0.0115 24 622.17 67.35 0.001 
Pillai's trace 2.138 24 724 34.654 0.001 
Hotelling-Lawley trace 14.466 24 412.13 106.6 0.001 
Roy's greatest root 10.537 6 181 317.869 0.001 

EFD 

Intercept 

Wilks' lambda 0.01 61 123 188.89 0.001 
Pillai's trace 0.99 61 123 188.89 0.001 
Hotelling-Lawley trace 93.68 61 123 188.89 0.001 
Roy's greatest root 93.68 61 123 188.89 0.001 

Between-group 

Wilks' lambda 0.001 244 494.07 33.85 0.001 
Pillai's trace 3.73 244 504 28.22 0.001 
Hotelling-Lawley trace 78.61 244 437.85 39.16 0.001 
Roy's greatest root 33.30 61 126 68.79 0.001 

DftC 

Intercept 

Wilks' lambda 0.026 100 84 31.631 0.001 
Pillai's trace 0.974 100 84 31.631 0.001 
Hotelling-Lawley trace 37.655 100 84 31.631 0.001 
Roy's greatest root 37.655 100 84 31.631 0.001 

Between-group 

Wilks' lambda 0.0001 400 338.698 11.179 0.001 
Pillai's trace 3.599 400 348 7.814 0.001 
Hotelling-Lawley trace 100.797 400 300.192 20.802 0.001 
Roy's greatest root 79.173 100 87 68.881 0.001 

Num DF: Numerator Degrees of Freedom; Den DF: Denominator Degrees of Freedom; F Value: The F value, a measure used to test the differences 
between groups; Pr>F: The p value, indicating the level of statistical significance 
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Morphological Otolith Analysis Based on BDP-ShI 
 

The Linear Discriminant Analysis results for the five 
fish species, based on the BDP and ShI shape indices, 
reveal two discriminant functions with eigenvalues of 
0.858 and 0.101 (Figure 3). The total eigenvalue sum is 
0.96, indicating the overall variance explained by the 
model. The first discriminant function accounts for 
89.43% of the variance, while the second function 
explains 10.57% of the variance. This indicates that the 
first discriminant function is the most significant, 
capturing the majority of the discriminative information 
between the species. The second function, although less 
significant, still contributes to the model's ability to 
differentiate the fish species. These results suggest that 
the shape indices BDP-ShI are effective in distinguishing 
between the five fish species, with the first discriminant 
function playing a dominant role in this differentiation 
(Figure 3). The LDA group scatter plot, interpreted along 
the LD1 axis, demonstrates a distinct separation, 
dividing the chart into two segments. On the positive 
side of the axis, species O. ruber and J. carouna are 
distributed, while the remaining species, S. leptolepis 
and Siganus canaliculatus, are positioned on the 

negative side. As analyzed previously, LD1 contributes 
significantly to explaining the variance, highlighting its 
importance in the LDA grouping. Regarding the vertical 
axis, the majority of the species are positioned above 
the value of -2, with only S. canaliculatus appearing on 
the opposite side. Overall, the LDA plot distinctly 
categorizes the morphological groups. There are only 
minor overlaps among a few points of O. ruber and J. 
carouna; minimal overlap between S. sihama and S. 
leptolepis; and between S. leptolepis and S. 
canaliculatus (Figure 3). 

The analysis of shape features contributing to the 
Linear Discriminant Analysis plot for distinguishing 
among five fish species reveals that ellipticity and aspect 
ratio play the most significant roles along the LD1 axis. 
Ellipticity, with the highest contribution score of 79.53, 
is the primary feature differentiating the species on this 
axis, indicating substantial variation in otolith ellipticity 
among the groups. Aspect ratio follows with a 
contribution of 14.68, further enhancing the distinction 
along LD1. For the LD2 axis, form factor stands out with 
the largest contribution (57.57), showing it is the key 
feature separating species along this secondary axis, 
complemented by ellipticity and rectangularity with 

 

Figure 3. Scatter plot of linear discriminant analysis of otolith morphometric differences among five fish species based on BDP-
ShI. 1 blue stars - S. sihama; 2. orange circles - S. leptolepis; 3. green triangles - S. canaliculatus; 4 - red crosses O. ruber; 5. purple 
circles - J. carouna. 
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notable contributions of 20.72 and 18.13, respectively 
(Table 3). Features such as area, circularity, and 
perimeter exhibit minimal contributions to both LD1 and 
LD2, suggesting limited influence on group separation. 
This analysis indicates that ellipticity, aspect ratio, and 
form factor are the most informative descriptors for 
otolith morphology in distinguishing fish species in LDA 
space, providing critical insights into morphological 
differences relevant to species identification. 

To assess the level of misclassification among fish 
groups based on BDP-ShI, we will examine the confusion 
matrix for pairwise species comparisons in Figure 4. The 
confusion matrix from the Linear Discriminant Analysis 
clearly demonstrates the classification capabilities for 
five fish species based on BDP-ShI traits. S. sihama and 
J. carouna both achieve perfect classification accuracies 

of 100%, indicating no misclassifications among these 
samples. S. leptolepis, however, shows a classification 
accuracy of 94% with 4% of its samples misclassified as 
S. canaliculatus and 2% as S. sihama, suggesting 
potential similarities that may impede clear 
differentiation. S. canaliculatus is accurately classified at 
a rate of 96.67%, with a small proportion, 3.33%, being 
incorrectly classified as S. sihama, highlighting a slight 
confusion that could be attributed to overlapping traits. 
O. ruber shows an accuracy of 96.55%, with a minor 
misclassification rate of 3.45% as J. carouna (Figure 4). 
These results illustrate the effectiveness of LDA in 
distinguishing between these species, although the 
slight misclassifications between S. leptolepis, S. 
canaliculatus. 

Table 3. Contribution of shape features to linear discriminant functions (LD1 and LD2) for otolith morphological differentiation 
among five fish species 

Factor LD1 LD2 Contribution LD1 Contribution LD2 

Length 0,104 0,064 0,076 0,023 
Width 0,007 0,056 0,005 0,020 
Perimeter -0,012 -0,038 0,009 0,014 
Area 0,000 0,000 0,000 0,000 
Aspect ratio 20,037 7,410 14,678 2,649 
Ellipticity -108,564 -57,957 79,530 20,716 
Circularity 0,000 0,002 0,000 0,001 
Rectangularity 0,805 50,724 0,590 18,130 
Roundness -1,098 -2,469 0,805 0,883 
Form factor -5,879 -161,056 4,307 57,566 

Note: LD1 - Linear Discriminant 1; LD2 - Linear Discriminant 2. 

 
 
 

 

Figure 4. Confusion matrix for species classification using linear discriminant analysis based on BDP-ShI. 1. S. sihama, 2. 
S. leptolepis, 3. S. canaliculatus, 4. O. ruber, 5. J. carouna. 
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Morphological Otolith Analysis Based on Efd 
 

Eliptic Fourier Descriptors of five fish species reveal 
two discriminant functions with eigenvalues of 0.424 
and 0.319 (Figure 5). The total eigenvalue sum is 0.743, 
indicating the overall variance explained by the model. 
The first discriminant function accounts for 57.02% of 
the variance, while the second discriminant function 
explains 42.98% of the variance. These results suggest 
that both discriminant functions play substantial roles in 
differentiating the otolith morphology among the fish 
species. Unlike previous analyses where one function 
might dominate, in this case, both functions contribute 
significantly to the model's ability to distinguish 
between species. This indicates that the EFD method 
captures a more balanced set of discriminative 
information, with no single function overwhelmingly 
dominating the variance explanation. Focusing on the 
LD1 axis, it is evident that J. carouna is clearly isolated 
on the far left. Nearby, O. ruber also forms a separate 
cluster, albeit slightly overlapping with S. sihama and S. 
leptolepis, which are closer to the center of the LD1 axis 
(Figure 5). S. canaliculatus, distinctly separated and 
located towards the top of the LD2 axis, showcases a 
clear divergence from the other species, emphasizing its 
unique morphological traits based on EFD (Figure 5). The 
LD1 axis primarily aids in the segregation of J. carouna, 

underlining major differences in their otolith shapes 
compared to the others. The slight overlap observed 
between S. sihama, O. ruber, and S. leptolepis near the 
center suggests some similarity in their otolith 
morphometrics, which may lead to closer clustering 
(Figure 5). 

Each species has achieved a classification accuracy 
of 100%, as evidenced by a 100% value in the 
corresponding column for each species label, with zero 
values across other columns in the respective rows. The 
absence of misclassifications among the species 
indicates that the EFD indices utilized in the LDA are 
highly effective at differentiating these species 
(Figure 6). 

Figure 7 illustrates the contributions of various 
variables (coefficients) to the first and second linear 
discriminants (LD1 and LD2) derived from a linear 
discriminant analysis based on Elliptic Fourier 
Descriptors. The bar plot indicates that certain 
coefficients, such as coef 62, coef 50, and coef 61, 
exhibit high contributions to LD1, as evidenced by their 
larger weights. This suggests these variables play a 
significant role in defining the separation along LD1. 
Similarly, for LD2, several coefficients, including coef 55 
and coef 50, show prominent contributions, implying 
their relevance in distinguishing along this dimension. 
The distribution of weighting factors across coefficients 

 

Figure 5. Scatter plot of linear discriminant analysis of otolith morphometric differences among five fish species based on 
coefficients of EFD. 1 blue stars - S. sihama; 2. orange circles - S. leptolepis; 3. green triangles - S. canaliculatus; 4 - red crosses O. 
ruber; 5. purple circles - J. carouna. 
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highlights a pattern where a subset of variables strongly 
influences each discriminant, while many others have 
minimal impact. This suggests that LDA may benefit 
from the most influential variables, allowing for 
potential dimensionality reduction by focusing on these 
high-contribution coefficients. The differential 
contribution between LD1 and LD2 may also indicate 
distinct feature sets that discriminate between the 
classes in different ways along each axis. 
 
Morphological Otolith Analysis Based on DftC 
 

The LDA results indicate the presence of two 
discriminant functions with eigenvalues of 0.785 and 
0.098 (Figure 8). The total eigenvalue sum is 0.89, 
representing the overall variance explained by the 
model. The first discriminant function accounts for 
88.89% of the variance, while the second discriminant 
function explains 11.11% of the variance (Figure 8). This 
suggests that the first discriminant function captures the 
majority of the discriminative information between the 
classes, making it the most significant component in 
distinguishing the different groups in the dataset. The 
second function, while less significant, still contributes 
to the model's ability to separate the classes. Figure 8 
provides a clear separation of species along the LD1 and 
LD2 axes. On the LD1 axis, J. carouna is clearly isolated 

on the far left, showcasing its unique morphometric 
features distinct from those of other species. O. ruber is 
also distinctly grouped, with no overlap with J. carouna, 
which is positioned closer to the center of the LD1 axis. 
This distinct positioning of O. ruber indicates its unique 
otolith characteristics that set it apart from J. carouna, 
despite these two species being in the same family and 
relatively similar in terms of body morphology. This 
result demonstrates a significant improvement over 
classifications based on BDP-ShI. 

Each species has achieved a classification accuracy 
of 100%, as evidenced by a 100% value in the 
corresponding column for each species label, with zero 
values across other columns in the respective rows. The 
absence of misclassifications among the species 
indicates that the DftC indices utilized in the LDA are 
highly effective at differentiating these species 
(Figure 9). 

Figure 10 illustrates the contributions of various 
distance variables from DftC to the first and second 
linear discriminants (LD1 and LD2) in a linear 
discriminant analysis (LDA). Notably, certain distances, 
such as distance 11, distance 10, and distance 8, show 
high contributions to LD1, indicating their importance in 
defining this discriminant. In contrast, a few other 
distances, including distance 75 and distance 99, 
contribute more significantly to LD2. The distribution of 

 

Figure 6. Confusion matrix for species classification using linear discriminant analysis based on coefficients of EFD. 1. S. sihama, 2. 
S. leptolepis, 3. S. canaliculatus, 4. O. ruber, 5. J. carouna. 
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Figure 7.  Histogram of variable contributions to LD1 and LD2 in linear discriminant analysis based on EFD coefficients. The blue 
bars represent the contributions of variables to LD1, while the orange bars indicate their contributions to LD2. The chart highlights 
the weighting factors of each variable in defining the separation along each discriminant, with certain coefficients showing higher 
importance for LD1 or LD2. 
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Figure 8. Scatter plot of linear discriminant analysis of otolith morphometric differences among five fish species based on DftC. 1 
blue stars - S. sihama; 2. orange circles - S. leptolepis; 3. green triangles - S. canaliculatus; 4 - red crosses O. ruber; 5. purple circles 
- J. carouna. 

 

 

Figure 9. Confusion matrix for species classification using linear discriminant analysis based on DftC. 1. S. sihama, 2. S. leptolepis, 
3. S. canaliculatus, 4. O. ruber, 5. J. carouna. 
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Figure 10. Histogram of variable contributions of DftC distances to LD1 and LD2 in linear discriminant analysis. The blue bars 
represent the contributions of variables to LD1, while the orange bars indicate their contributions to LD2. The chart highlights the 
weighting factors of each variable in defining the separation along each discriminant, with certain coefficients showing higher 
importance for LD1 or LD2. 
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weighting factors across the distances suggests that LD1 
and LD2 each emphasize different sets of distance 
variables, which play crucial roles in distinguishing 
between classes along each discriminant. This 
differential weighting implies that the DftC distances are 
utilized variably across the two discriminants, 
potentially providing unique separation patterns based 
on specific distance features. 
 

Discussion 
 

Synthesizing the results from Figures 3, 4, 5, 6, 8, 9, 
and Table 2 we observe that among the three methods 
used to assess otolith morphology, DftC exhibits the 
clearest grouping and highest accuracy. To further 
evaluate and gain deeper insights into the effectiveness 
of these methods, we will examine Figure 11, which 
depicts the reconstructed mean outlines using 100 
mean points on the outline. 

It is evident that, in terms of size, utilizing BDP-ShI 
has the drawback of difficulty in distinguishing between 
certain species pairs: S. sihama - S. leptolepis; S. sihama 
- S. canaliculatus; O. ruber - J. carouna, as they share 
similar sizes and shapes compared to other pairs. 
Consequently, misidentifications occurred with 
frequencies of 2.22% for S. sihama - S. canaliculatus; 
3.33% for S. leptolepis - S. canaliculatus; and 3.45% for 
O. ruber - J. carouna (Figure 4).  Regarding the 
coefficients of EFD, although they are independent of 
otolith size, this also presents a limitation as otolith size 

is an important characteristic for differentiation. DftC 
exhibits a balanced characteristic by preserving both 
size traits and outline variations. Thus, the grouping in 
the LDA plot based on DftC (Figure 8) is clearer 
compared to LDA based on EFD coefficients (Figure 5). 

According to several references, the study by 
Salimi et al. (2016) used the STFT shape index to identify 
14 fish species and successfully identified them with an 
accuracy of 70% to 100%. The authors consider this a 
relatively acceptable identification result; however, they 
emphasize the need to continue evaluating the 
identification capability using different recognition 
models. The lack of comprehensive characteristics to 
describe otolith shapes can make classification 
challenging (Simoneau et al., 2000). The research by 
Yuwen Chen and Guoping Zhu in 2023 utilized various 
machine learning models to identify otolith species 
based on ShI and wavelet transform for otoliths of four 
fish species (E. carlsbergi, C. rastrospinosus, P. 
antarcticum, K. anderssoni), achieving overall accuracy 
from 66% to 96%. Thus, with good clustering results and 
species identification accuracy reaching 100%, DftC has 
the potential to be a good classification index for otolith 
morphology research. 

The study by Avigliano et al. (2016) on several fish 
species used canonical discriminant analysis (CDA) 
based on BDP, ShI, and additional indices to illustrate 
species differentiation among H. cunninghami, K. 
stewarti, L. haplodactylus, N. compressus, and U. 
xenogrammus, with correct classification rates ranging 

 

Figure 11. Average contour of five species. SSI- S. sihama; CCV- S. leptolepis; DIA - S. canaliculatus; 4 – XOR O. ruber; CDD- J. 
carouna. 
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from 66% to 100%. However, the accuracy rate was 
lower (50%) for A. rufus, B. dorsalis, C. jojettae, F. 
flavonigrum, F. varium, F. gymnotum, M. bathytaton, 
and N. caerulpunctus. In our research, species 
classification accuracy was relatively high, especially 
when using EFD and DftC indices, which showed 
differentiation up to 100%. For BDP and SHI indices, the 
minimum accuracy was 94%, likely due to the distinct 
nature of the study subjects.  Charmpila et al. (2024) 
conducted a study on five fish species collected from 
southern Iran and the Persian Gulf region. When using 
otolith variables and shape indices, the authors reported 
an overall classification accuracy of 80.2%, with values 
ranging from 65% to 89% across species. The application 
of wavelet-based shape analysis to the same dataset 
resulted in significantly lower classification 
performance, with accuracy ranging from 13% to 78%, 
and an overall average of only 39.6%. Although the five 
species in their study belong to the same genus, the low 
classification success with wavelet analysis suggests 
limitations in capturing subtle intra-genus differences. 
Our newly proposed DftC method, with its fixed angular 
resolution and detailed radial structure, may offer 
improved discriminatory power in such cases (accuracy 
of 100%). More recently, Vu et al. (2025) evaluated the 
classification ability of six machine learning models and 
three deep learning architectures based on BDP, ShI, 
and their combinations. With BDP-based inputs, the 
Random Forest Classifie RFC and the Bagging Classifier 
BaC models achieved classification accuracies ranging 
from 84.7% to 86.8%. Classification based on ShI alone 
yielded much lower accuracies, with RFC reaching only 
53.47% and other models falling below 50%. Deep 
learning models (Dense64, Dense128, Dense256) 
trained on BDP-ShI data yielded accuracies between 
75.7% and 77.1%. Our newly proposed method (DftC) 
demonstrated higher classification accuracy compared 
to BDP-ShI, suggesting its strong potential to further 
enhance performance when integrated with machine 
learning and deep learning models. The DftC index 
provides a compact, structured, and biologically 
interpretable shape descriptor. Unlike Elliptic Fourier 
Descriptors (EFD), which often generate large 
coefficient sets requiring dimensionality reduction 
through PCA—potentially discarding important shape 
information—the DftC retains full spatial resolution with 
no transformation loss. Many studies have indicated 
that environmental factors, such as salinity, water 
temperature, and depth, contribute to inter- and intra-
species differences in otolith groove area and length. 
However, variables like otolith size, rostrum shape, and 
groove morphology are primarily genetically controlled 
within a specific fish group (Reichenbacher & Reichard, 
2014). Biologically, the five species in this study mostly 
belong to different families, thus reflecting substantial 
genetic differences. Regarding their habitats, these 
species represent the tropical coastal zone with distinct 
diets and habitats, leading to relatively high 
differentiation levels. Additionally, DftC demonstrated 

superior discriminatory power compared to commonly 
used indices.  Continual improvements in research 
methodology, particularly the development of new 
indices, are essential in scientific research on otoliths. 
The DftC index set, comprising 100 parameters, 
effectively numerically characterizes otolith shape. This 
numerical dataset can be associated with each species 
and holds the potential to establish a standard otolith 
database for each species. Integrating this with machine 
learning or deep learning techniques could transform it 
into a highly useful index. 
 

Conclusion 
 

This study reaffirms that otolith morphological 
analysis is an effective tool for species classification, 
with the five fish species investigated exhibiting distinct 
otolith morphological characteristics. 

All three methods (BDP-ShI, EFD, DftC) utilized for 
otolith morphological analysis in this study showed good 
classification capabilities for the five commercial fish 
species. Specifically, scatter plot of LDA and Confusion 
matrix based on DftC exhibited the clearest grouping 
(species clearly separated along LD1 and LD2 axes, with 
no overlap) and high species identification accuracy 
(100% correct prediction for all species). Based on EFD, 
relatively clear grouping was observed (with some minor 
overlap) and high species identification accuracy (100% 
correct prediction for all species). With BDP-ShI, 
however, there was still significant overlap in 
morphological features between species on the LDA 
plot, resulting in misclassification rates ranging from 
3.33% to 6%. 
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