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Abstract 
 

Fisheries are highly vulnerable to environmental and anthropogenic pressures and 
evaluating fish stocks is crucial for sustainable management. This study aims to assess 
the effects of sea surface temperature (SST), sea surface salinity (SSS), sea surface 
chlorophyll-a concentration (SSC), and lunar phases on the catch per unit effort (CPUE) 
of purse seine fisheries in the Aegean Sea. Catch data were collected from a purse 
seine vessel operating in İzmir Bay between 2017 and 2023. A generalized linear model 
(GLM) was employed to standardize CPUE values, considering various temporal and 
environmental factors. Results indicated significant variability in CPUE across years, 
months, and moon phases, with the highest CPUE observed during January and the 
last quarter lunar phase, while April and the full moon phase exhibited lower catch 
rates. SSC had a significant negative effect on CPUE, whereas SST and SSS showed no 
statistically significant influence. The decline in CPUE over the study period suggests 
increasing pressure on fish stocks, highlighting the importance of monitoring 
environmental changes for effective fisheries management. This study contributes to 
filling the knowledge gap on the impacts of SST and SSC on purse seine fishing in the 
Aegean Sea, offering insights for future fisheries policies and conservation efforts. 

 

Introduction 
 

Fisheries are highly sensitive, not only to 
anthropogenic pressures but also to environmental 
variables. Abiotic factors such as temperature, salinity, 
light, oxygen, currents, wind, and precipitations affect 
the dynamics of the food chain, ultimately, the density 
and accessibility of fish populations are also affected 
(Miller & Schneider, 2000; Avsar, 2016). Environmental 
factors can also change depending on climate change, 
and these factors influence the survival capabilities of 
organisms at the ecosystem level (Brander, 2007; 
Gamito et al., 2015; Tosunoglu & Ceyhan, 2021), 
therefore the past and future distribution of biodiversity 

are determined. Additionally, these changes disrupt 
marine biodiversity and ecosystems, posing a major risk 
to global fishery stocks (Cheung et al., 2009; Medellín – 
Ortiz et al., 2022). 

Accurately evaluating existing stocks, is essential 
for sustainable fisheries management (Hilborn & 
Walters, 2013). Due to the financial challenges of 
collecting fishing-independent data, many stock 
evaluations rely on fisheries-dependent data. The most 
common source of this data is catch and effort 
information, typically obtained from commercial or 
recreational fisheries. This information reveals the Catch 
Per Unit Effort (CPUE) (Maunder & Punt, 2004). 
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Changes in fish abundance in the ocean are 
important information for fisheries management. CPUE 
data allows us to see the performance of the fishing gear 
and make determinations about resource availability, as 
it allows us to see changes in catch amounts (Abdellaoui 
et al., 2017). However, although the most common 
dataset used in stock management in fisheries is CPUE, 
its direct use can be misleading due to spatial, temporal, 
and environmental factors and fishing capacity changes 
(Hua et al., 2019). For this reason, Maunder and Punt 
(2004), reported that standardization of CPUE to 
eliminate the changing effects on CPUE is one of the 
most widely applied methods for fisheries analyses. The 
standardized CPUE data is used to generate information 
about the impact of fishing on stocks, as well as to see 
the effects of environmental changes and to compare 
fishing activities across different regions. 

In order to obtain catch and effort data, it is 
necessary to be in contact with the fishing fleets in the 
targeted area. Furthermore, for sustainable fishing 
approaches, it is important to understand the fishing 
fleets and their fishing capacities. In the Mediterranean 
and Black Sea, small-scale fishing vessels represent 82% 
of the fleet, while purse seine and trawl vessels cover 
only 13% (purse seiners 5%). Despite this, purse seine 
vessels have been the fleet group responsible for more 
than half of the total catch (FAO, 2023). Likewise, purse 
seine vessels, which are also an important part of 
Turkish marine fisheries, represent only 2.80% (392 
vessels) of the entire fishing fleet in Türkiye. However, it 
produces nearly half of the total marine catch 
production (TurkStat, 2023). 

Pelagic fish, which constitute the majority of the 
catch composition in purse seine fisheries, are highly 
sensitive to climatic and environmental changes due to 
their population characteristics (Blaxter & Hunter, 1982; 
Cole & McGlade, 1998). This sensitivity makes purse 
seine fishing particularly vulnerable to environmental 
fluctuations, and understanding how these factors 
impact CPUE is crucial for effective fisheries 
management (Tosunoglu et al., 2021). 

Building on this, Tosunoglu et al. (2021) used 
generalized additive models (GAM) to investigate the 
relationships between CPUE and factors such as sea 
surface temperature (SST), lunar phases, fishing area, 
and the use of light in purse seine fisheries in İzmir Bay. 
Similarly, Ceyhan and Tosunoglu (2022) applied GAM 
techniques to examine the effects of environmental 
variables on bycatch from purse seine vessels. While 
previous research has focused on standardizing CPUE 
data and examining its relationship with various 
environmental factors (Teixeira et al., 2016; Abdellaoui 
et al., 2017; Ceyhan et al., 2018; Runcie et al., 2018; 
Karakulak & Ceyhan, 2024), studies specifically 
addressing purse seine fishing in the Aegean Sea remain 
limited. Furthermore, a critical knowledge gap exists 
regarding the influence of SST and sea surface 
chlorophyll-a concentration (SSC) on purse seine 
fisheries in this region. 

This study aims to fill these gaps by investigating 
the relationships between standardized CPUE and key 
environmental factors—including SST, sea surface 
salinity (SSS), SSC, and lunar phases—within the purse 
seine fisheries of the Aegean Sea. Using daily catch data 
from 2017 to 2023 and applying generalized linear 
models (GLMs), this research seeks to determine how 
these oceanographic and temporal variables influence 
CPUE, while also identifying trends in fishing 
productivity. The findings will contribute to a deeper 
understanding of the environmental drivers affecting 
purse seine fisheries and provide valuable insights for 
future management and conservation efforts in the 
Aegean Sea. 
 

Materials and Methods 
 

CPUE data, measured in kilograms for the target 
species (Sardina pilchardus and Engraulis encrasicolus), 
were collected daily from 2017 to 2023 from a purse 
seine vessel operating in İzmir Bay. Data were gathered 
through interviews with the vessel's captain during the 
fishing season, which runs from September 1 to April 15. 
The dataset used in the analyses includes date (day, 
month, year), season, SST, SSC, SSS, species caught and 
catch information in kilograms. Environmental variables, 
including SST, SSC, and SSS were obtained from the E.U. 
Copernicus Marine Service database (2023a, 2023b) as 
daily values and incorporated into the analysis to 
examine their effects on catch rates. Lunar phases 
during fishing operations were classified into four 
categories—new moon, first quarter, full moon, and last 
quarter—based on the lunar calendar. Bycatch (both 
retained and discarded species) was excluded from this 
analysis. 

The CPUE was calculated from three parameters as 
below for each fishing vessel: 
 

F = H x D 
 

CPUE = B x F-1 

 
Where F represents the fishing effort, H is the 

number of hauling, D is the fishing day, and B is the 
biomass of landings. 

The normality of the data distribution was 
evaluated by Kolmogorov-Smirnov test and Shapiro-
Wilk test. It was seen that the data did not follow a 
normal distribution, so normalization statistics were 
applied. For the normalization of the dataset, 7 different 
normalization methods; arcsinh transformation, 
centering and scaling, double reciprocal log 
transformation, logarithmic transformation, rank 
normalization transformation, square root 
transformation, and Yeo-Johnson transformation were 
tested using the generalized cross-validation process. As 
a result, the Yeo-Johnson transformation was the most 
appropriate method, and the normalized CPUE values 
were subsequently used for modeling.  
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Before model selection, multicollinearity among 
the predictor variables was assessed using a Variance 
Inflation Factor (VIF) analysis, which quantifies how 
much variance in each regression coefficient is inflated 
due to collinearity with other predictors. VIF values 
above 5 or 10 indicate high multicollinearity, and this 
step ensures the stability of the regression model. 

Additionally, a Pearson correlation matrix was 
computed to assess relationships between temporal 
and environmental variables, including year, month, 
season, moon phases, SST, SSS, and SSC. Hierarchical 
clustering was applied to the correlation matrix to 
enhance the interpretability of these relationships. This 
comprehensive approach provided insights into 
potential collinear relationships and facilitated the 
identification of key patterns between oceanographic 
parameters and temporal factors.  

In order to find the regression analysis method that 
best explains the relationship between the dependent 
and independent variables, 7 models were created using 
generalized linear model (GLM) techniques. The Akaike 
Information Criterion (AIC) (Akaike, 1974) was used to 
select the best model. To assess the effects of 
independent variables on CPUE, the model with the 
lowest AIC value was identified as the generalized linear 
modeling (GLM) technique with Gaussian distribution 
(Nelder & Wedderburn, 1972), and this model was 
employed. 

All analyses were performed using R version 4.3.3 
(R Development Core Team, 2024). The following R 
packages were used: mgcv for model fitting (Hastie & 
Tibshirani, 1986), tidyverse (Wickham et al., 2019), car 
(Fox & Wisberg, 2019), bestNormalize (Peterson & 
Cavanaugh, 2020; Peterson, 2021), and corrplot (Wei & 
Simko, 2024). 

Results 
 

Catch per unit effort (CPUE) for the purse seine 
vessel varied significantly across years, months, and 
moon phases, highlighting clear temporal patterns. In 
terms of yearly trends, 2017 had the highest mean CPUE 
at 6442 kg (haul day) −1, with a maximum value of 24.500 
kg (haul day) −1, and a median of 4536 kg (haul day) −1 
(Figure 1). In contrast, 2019 recorded the lowest mean 
CPUE at 3069 kg (haul day) −1, with a maximum of 9772 
kg (haul day) −1 and a median of 2548 kg (haul day) −1. A 
slight recovery was observed in 2022, where the mean 
CPUE was 4127 kg (haul day) −1, before declining again in 
2023, with a mean of 3444 kg (haul day) −1 and a median 
of 2744 kg (haul day) −1. Across all years, the interquartile 
range (IQR) was widest in 2017 (1852–10.202 kg (haul 
day) −1), indicating substantial variability in catch rates 
during this year. 

Monthly trends also revealed distinct seasonal 
patterns. January had the highest mean CPUE at 5734 kg 
(haul day) −1, with a maximum catch of 17.878 kg (haul 
day) −1 and a median of 4637 kg (haul day) −1, indicating 
strong fishing activity early in the year (Figure 2). In 
contrast, April exhibited the lowest mean CPUE at 2639 
kg (haul day) −1, with a minimum of 448 kg (haul day) −1 
and a median of 2200 kg (haul day) −1, reflecting reduced 
fishing effort at the season's end. September and 
October were also high-performing months, with mean 
CPUEs of 5222 kg (haul day) −1 and 5369 kg (haul day) −1, 
respectively, and a maximum catch of 24.500 kg (haul 
day) −1 in October. 

CPUE also showed variability across moon phases. 
The highest mean CPUE was recorded during the Last 
Quarter at 5364 kg (haul day) −1, with a maximum of 
24.500 kg (haul day) −1 and a median of 4130 kg 

 

Figure 1. The CPUE values of a purse seine vessel in the Aegean Sea by years. 
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(haul day) −1 (Figure 3). Conversely, the Full Moon phase 
had the lowest mean CPUE of 3869 kg (haul day) −1, with 
a median of 3180 kg (haul day) −1. The Last Quarter phase 
exhibited the widest variability, with an IQR from 2009 
to 7322 kg (haul day) −1, while the Full Moon phase 
displayed a narrower range (1361 to 4970 kg (haul 
day) −1. 

Overall, these results show that CPUE was highest 
in January, October, and during the Last Quarter moon 
phase, while April and the Full Moon phase exhibited 
lower catch rates. These patterns highlight the influence 
of both temporal factors and lunar phases on fishing 
productivity, as demonstrated by the box plot graphs for 
each variable. 

The correlation matrix provided insights into the 
relationships between the key variables—year, month, 
season, moon phases, SST, SSS, and SSC. Daily values of 
these environmental parameters were used in the 
analysis. A moderately positive correlation between 
year and SSC (r=0.38) suggests that chlorophyll-a levels 
have increased over time. On the other hand, year 
exhibited weak negative correlations with SST (r=−0.23) 
and SSS (r=−0.24), indicating slight decreases in these 
sea surface conditions over time. Season demonstrated 
a strong positive correlation with SST (r=0.76) and a 
moderate correlation with SSS (r=0.50), highlighting 
seasonal variations in temperature and salinity. The 
strong negative correlation between SST and SSC 
(r=−0.67) suggests that higher sea surface temperatures 
are associated with lower chlorophyll-a concentrations, 
which may reflect biological processes influencing 
phytoplankton growth. Moon phases exhibited little to 
no correlation with the other variables, with the highest 
being a weak positive correlation with SSC (r=0.008). The 
expected correlation between month and season was 
strong (r=0.69), given their temporal overlap. Overall, 

the correlation matrix underscores the significant 
effects of seasonality and temperature on chlorophyll-a 
levels and salinity, while temporal and lunar factors 
appear to have weaker associations with these 
oceanographic parameters (Figure 4). 

Results in Table 1 showed that all predictors had 
VIF values well below the critical threshold of 5, 
indicating that multicollinearity is not a significant 
concern in this dataset. The predictor season had the 
highest VIF (4.40), corresponding to a GVIF1/(2Df) value of 
1.45, suggesting moderate multicollinearity but still 
within acceptable limits. SST also exhibited moderate 
VIF (3.57, GVIF1/(2Df)=1.89). All other predictors, including 
year, month, salinity, chlorophyll-a concentration, and 
moon phases, had VIF values ranging from 1.04 to 2.30, 
indicating low levels of multicollinearity (Table 1). 
Overall, the VIF analysis suggests that multicollinearity is 
not a major issue in the model, and the predictors can 
be retained without concerns of inflated variances or 
unstable coefficients. 

To determine the best predictors of CPUE, a series 
of generalized linear models (GLMs) were developed. 
Seven models were constructed, incorporating both 
temporal and oceanographic variables such as year, 
month, season, SST, SSS, SSC, and moon phases. The 
selection of the best model was based on the Akaike 
Information Criterion (AIC), where lower AIC values 
indicate a better fit. Model 1, which included only year 
as a predictor, resulted in an AIC of 1585 (Table 2). As 
additional variables were introduced in subsequent 
models, the AIC values varied, with Model 7, which 
included all predictors, yielding the lowest AIC (1571). 
This suggests that Model 7, which accounts for both 
temporal and environmental factors, provides the best 
fit for explaining the variability in CPUE. Consequently, 
Model 7 was selected as the optimal model, reflecting 

 

Figure 2. The CPUE values of a purse seine vessel in the Aegean Sea by months. 
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Figure 3. The CPUE values of a purse seine vessel in the Aegean Sea by lunar phases. 

 

 

Figure 4. Correlation plot illustrating the relationships among variables included in the analysis. 
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the importance of integrating a comprehensive set of 
predictors to understand CPUE dynamics. 

The diagnostic plots for Model 7 indicated that the 
residuals were well-behaved. The deviance residuals 
formed a straight line in the QQ plot (Figure 5a), 
suggesting that the normalized CPUE values followed a 
normal distribution. Furthermore, the residuals 
appeared independent and well-distributed (Figure 5b), 
confirming the validity of the model assumptions 

The analysis revealed that the year had a 
significant negative effect on CPUE, indicating a slight 
decline in CPUE over time. SSC was also found to be an 
important predictor, suggesting that higher chlorophyll-
a concentrations were associated with lower CPUE 
values, potentially reflecting changes in productivity or 
resource availability. Additionally, the full moon phase 
had a significant negative effect on CPUE, indicating 
reduced catch rates during this lunar phase (Table 3). 

Other variables, including month, SST, SSS, winter, 
and spring, did not exhibit significant effects on CPUE at 
the 5% significance level. However, spring was close to 
the borderline of significance (P=0.0537), suggesting a 
possible seasonal trend in CPUE reduction during this 
period. 

These results suggest that year, SSC, and lunar 
phases, particularly the full moon, are key factors 
influencing CPUE, while other environmental and 
temporal factors show less consistent effects on CPUE. 
 

Discussion 
 

In the presence of a linear relationship between 
dependent and independent variables, the use of GLM 
techniques for standardization of fisheries-dependent 
data (commercial catch data, effort data, surveys, etc.) 
is quite common (Venables & Dichmont, 2004). 
However, due to the lack of a linear relationship 

between environmental factors and catch data in 
fisheries, there are also studies using GAM techniques 
(Walsh & Kleiber, 2001; Hua et al., 2019). Li et al. (2023) 
used GLM and GAM techniques to explore the 
relationship between environmental changes and CPUE. 
Although GLM results were highly significant, GAM was 
reported to be the better model based on the AIC value. 
In this study, the GLM technique produced the best 
results in terms of AIC value. 

In the Eastern Mediterranean, Karakulak and 
Ceyhan (2024) used GAM techniques to determine the 
effects of variables (SST, salinity, fishing vessel 
measurements, temporal-spatial parameters) on 
Atlantic bluefin tuna (Thunnus thynnus) CPUE, reporting 
that the lowest CPUE occurred in July and the highest in 
June. In addition, a statistically significant negative 
effect of year on CPUE was found (P<0.05). In the 
Western Mediterranean, Jghab et al. (2019) also 
examined the effects of environmental and temporal 
variables such as SST, SSS, and SSC on the catch of S. 
pilchardus. They found that winter (February-April) had 
the lowest sardine catches, with increasing amounts 
from spring to autumn, along with a significant decline 
in annual sardine catches. In our study, we observed a 
negative correlation between year and CPUE, with CPUE 
decreasing by almost half from 2017 to 2023. It is also 
notable that CPUE decreased during February-April, 
before the fishing season closure in Turkey (April 15), 
and increased in September-October after the season 
reopening. This may reflect the beneficial effects of 
fishing bans on fish abundance. 

Many studies have examined the effects of lunar 
phases on fish abundance. In Hawaii, Bigelow et al. 
(1999) used GAM to investigate the effects of various 
factors, including lunar phases and SST, on the CPUE of 
Xiphias gladius and Prionace glauca, and found that the 
lunar index was significantly effective for the CPUE of X. 

Table 1. VIF values of predictor variables in the generalized linear model (GLM) for CPUE 

Variable GVIF Df GVIF (1/(2*Df)) 

Year 1.242.195 1 1.114.538 
Month 2.301.182 1 1.516.965 
Season 4.402.548 2 1.448.525 
SST 3.572.612 1 1.890.135 
SSS 1.505.777 1 1.227.101 
SSC 2.237.020 1 1.495.667 
Moon Phase 1.041.749 3 1.006.840 
*(GVIF= Generalized Variance Inflation Factor, Df=Degrees of freedom). 

 
 
 

Table 2. The developed models and their corresponding AIC values 

No Model AIC 

1 CPUE~Year 1585 
2 CPUE~Year+Month 1586 
3 CPUE~Year+Month+Season 1584 
4 CPUE~Year+Month+Season+SST 1586 
5 CPUE~Year+Month+Season+SST+SSS 1588 
6 CPUE~Year+Mont+Season+SST+SSS+SSC 1578 
7 CPUE~Year+Month+Seson+SST+SSS+SSC+Moon Phases 1571 
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gladius. It was reported that X. gladius CPUE increased 
from the new moon phase with the lowest lunar index 
(0.0) to the full moon phase with the highest lunar index 
(1.0). Arifin et al. (2020) found that the highest catch 
amounts in pelagic fish caught by purse seines occurred 
during the first quarter lunar phase, while the lowest 
catches were observed during the new moon phase. 
Tosunoglu et al. (2021) reported that the lowest CPUE in 

sardine fishing with purse seine nets was observed 
during the full moon phase, while the highest CPUE 
occurred during the last quarter phase, and that CPUE 
decreased with increasing light intensity. In this study, 
the highest CPUE was also observed during the last 
quarter phase, and the lowest CPUE occurred during the 
full moon phase. These differences in findings across 
studies may be due to species-specific differences in 

 

Figure 5. (a) QQ-plot of residuals (black). The red line indicates the 1–1 line. (b) Means of randomized quantile residuals. 

 
Table 3 The significance test of explained variables in generalized linear  

Explanatory Variable Estimate SE t P 

Year -0.0533 0.0210 -2.53 0.01 
Month -0.0112 0.0157 -0.716 0.474 
SST -0.0369 0.0241 -1.53 0.127 
SSS -0.166 0.258 -0.645 0.519 
SSC -1.73 0.499 -3.46 0.000589 
Winter -0.0490 0.163 -0.300 0.764 
Spring -0.371 0.192 -1.93 0.0537 
First Quarter -0.158 0.112 -1.41 0.159 
Full Moon -0.265 0.119 -2.22 0.0265 
Last Quarter 0.135 0.108 1.25 0.213 

*(SE= Standard Eror, t= t-statistic, P= probability value).  
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phototactic behaviors, habitats, feeding strategies, 
reproductive patterns, and the need for protection from 
predators. For instance, some fish exhibit positive 
phototaxis, moving toward light to feed on plankton, 
while others show negative phototaxis, moving away 
from light to feed or hide in deeper, darker waters. 
Although the effect of moonlight in this study was not 
statistically significant, fish that display phototactic 
behaviors tend to form schools in response to moonlight 
intensity, which can influence catch amounts (Jatmiko, 
2015; Tosunoglu et al., 2021). 

In the Aegean Sea, the use of artificial light is not 
merely a supplemental tactic—it is a fundamental 
component of purse seine fishing operations. Light 
boats are routinely deployed during nighttime fishing 
activities to attract schooling pelagic fish such as sardine 
and anchovy to the surface, where they can be encircled 
by the net. This artificial light can eliminate or change 
the effects of certain environmental factors, such as 
moonlight and chlorophyll-a. Recognizing the dominant 
role of artificial light in fishing success is essential for 
correctly interpreting the environmental drivers of CPUE 
in this fishery. 

Tosunoglu et al. (2021) reported that SST values of 
214 operations of a purse seine vessel operating in the 
Aegean Sea had a statistically significant positive effect 
on CPUE amounts. In addition, Liu et al. (2022) reported 
that there was a negative relationship between 
temperature and CPUE in the Cololabis saira fishery and 
that the order of importance of the affecting 
environmental factors was SST>SSS>SSC. In the Western 
Mediterranean, Jghab et al. (2019) reported a negative 
relationship between sardine catch and SST in a study 
covering 34 years of data. Leitão et al. (2018) reported 
an increase in SST over the years in their study 
conducted along the Portuguese coast, as well as 
significant increases in the catch of warmer water 
species by fishing gear. Sajna et al. (2019) reported that 
the CPUE of the important pelagic species Sardinella 
longiceps increased between 27 °C and 29 °C, while 
CPUE decreased at temperatures outside this range. 
Karakulak and Ceyhan (2024) found that the SST variable 
had no significant effects (P>0.05) on CPUE of the 
Atlantic bluefin tuna in the Eastern Mediterranean. In 
our study, SST also did not show a significant effect on 
CPUE. We think the findings may differ due to the 
difference in the optimal temperature ranges required 
for the species to survive.  

Although SST is a well-known factor affecting 
feeding and shoaling behavior of anchovy and sardine, 
no statistically significant effect on CPUE was detected 
in this study. This may be due to the relatively narrow 
range of SST values observed during the fishing season 
(September–April), or the stronger influence of other 
operational factors such as lunar phase and artificial 
lighting. Additionally, SST may affect fish populations 
through lagged processes such as recruitment or 
migration timing, which are not directly reflected in daily 
CPUE values. 

In the Western Mediterranean, Jghab et al. (2019) 
reported a significant negative relationship between 
sardine catch and SSS. Liu et al. (2022) reported a 
positive relationship between SSS and CPUE for C. saira. 
Maravelias and Reid (1997) reported that herring 
(Clupea harengus), a pelagic species in and around the 
Shetland Islands, are more abundant in surface waters 
with high salinity (>35 ppt). Sajna et al. (2019) reported 
a negative relationship between S. longiceps CPUE and 
SSS in Indian waters using GAM. In this study, we did not 
find a significant relationship between increasing 
salinity values and CPUE. We believe that a longer time 
series would provide more meaningful results for 
observing the relationship between salinity changes and 
CPUE. 

The presence of phytoplankton and zooplankton in 
the stomachs and intestines of pelagic fish with a broad 
feeding spectrum (euryphagous) in their early stages 
indicates that they feed by filtering particles from the 
surrounding waters (Hunter, 1981; George et al., 2012). 
To examine the effect of chlorophyll-a concentration on 
the areas where fish larvae aggregate, Lasker (1975) 
placed Engraulis mordax larvae in water samples from 
different layers (from the surface and 15-30 m below the 
surface). It was found that larvae fed intensely in water 
samples with high chlorophyll concentration, while 
feeding in the surface water samples was minimal. This 
is consistent with the findings of George et al. (2012), 
who investigated the effect of chlorophyll-a 
concentration, obtained from satellite data, on S. 
longiceps catch rates in the coastal waters of three 
different states in India. They found that sardine larvae 
tended to form schools in response to increased 
chlorophyll levels. Additionally, it was observed that 
sardines arrived earlier in waters richer in chlorophyll, 
and a direct correlation between chlorophyll-a 
concentration and sardine catch rates was reported in 
each state. Similarly, Sajna et al. (2019) reported that 
chlorophyll-a had a positive relationship with the CPUE 
of S. longiceps. On the other hand, Liu et al. (2022) 
reported that annual C. saira CPUE was negatively 
correlated with SSC. In this study, we also found that SSC 
levels had a highly significant effect on CPUE, and there 
was a negative relationship between them. 

Despite a moderate increase in chlorophyll-a levels 
over time, CPUE values declined. This negative 
relationship may be influenced by the widespread use of 
light boats in purse seine fisheries in the Aegean Sea, 
which can override natural environmental cues such as 
prey concentration. Artificial light strongly influences 
fish aggregation behavior, potentially weakening the 
direct link between primary productivity and catch 
rates. Moreover, seasonal misalignment between peak 
chlorophyll concentrations and fishing activity may also 
contribute to this decoupling. 

Identifying the factors affecting fisheries and their 
impacts is crucial for the management of the oceans, 
which appear to be unlimited resources but are limited 
(Jatmiko, 2015; Nurlindah et al., 2017). This is because 
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fisheries-dependent CPUE data are widely used to 
assess stocks (Ducharme-Barth et al., 2022). In order to 
reveal the effects of temporal and basic environmental 
factors (SST, SSC, SSS, dates, moon phases) on CPUE, we 
standardized the CPUE data using GLM. We think that 
the reason why some variables did not have significant 
effects on CPUE may be due to the lack of 2020 data, 
due to the COVID-19 pandemic. 
 

Conclusion 
 

This study shows that the pressure on fish stocks 
increases with decreasing CPUE over the years. In 
addition to temporal factors, CPUE is affected by 
environmental factors such as SSC. These changes need 
to be monitored more closely in order to provide an 
accurate guide to fisheries management. The fact that 
SSC has a statistically significant effect on CPUE while 
SST and SSS do not show significant effects emphasizes 
that fisheries are in complex interactions and the 
importance of species-specific studies with longer time 
series, especially in seas with high species diversity, such 
as the Mediterranean Sea.  

Furthermore, as seen in other research, the 
variability in environmental effects depends on several 
factors such as target species, fishing gear, and region. 
Thus, a more comprehensive approach, including 
multiple fishing gears and environmental conditions, is 
essential for meaningful comparisons. The declining 
CPUE trend observed in our study points to an urgent 
need for more robust fisheries management and 
conservation efforts to safeguard the health of fish 
stocks in the Aegean Sea 
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