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Abstract 
 

Climate change led to a global effort to seek for new trade routes in the Arctic, 
significantly altering the maritime sector and increasing maritime activities. Attempt 
to search and navigate on new routes brought likelihood to a rise in ship accidents, 
therefore presenting substantial associated risks. Study employed deep learning 
techniques to predict accidents and outcomes, focusing on the likelihood of 
occurrences. Accident dataset covering 2005-2017, including variables such as vessel 
length, age, tonnage, and weather conditions. Dataset was divided into 70% training 
and 30% testing, using a k-fold cross-validation approach on 511 input-output 
combinations with 1000 trials each. Results demonstrate that ship tonnage, length, 
and age are crucial predictors. Highest F1 score (0.89) and lowest standard deviation 
were achieved using all features. Removing features like minimum daily temperature 
significantly reduced model performance, reliability improved when combined with 
weather forecasts. Model can aid planning and management of Arctic maritime 
operations by predicting associated risks and optimizing insurance premiums. Future 
research should incorporate additional data sources, test the model under diverse 
maritime conditions, and focus on specific ship types to develop specialized mitigation 
strategies. Implementing Polar Code regulations into model predictions can expand 
the model's applicability and offer insights for policymakers.  

Introduction 
 

Today, climate change has led to the emergence of 
new trade routes, particularly in the Arctic region, 
prompting significant changes in the maritime sector 
(Bai, 2015; Chircop, 2020; Hebbar et al., 2020; Sakhuja, 
2014). These changes, along with the utilization of new 
trade routes, have resulted in an increase in maritime 
activities such as fishing and aquaculture in the region, 
which in turn has led to an increase in the number of 
ship accidents. This increase carries with it a range of 
risks, primarily environmental impacts. The growing 
commercial interest in Arctic waters and the 
accompanying increase in ships due to climate change 
have continually risen. According to a 2024 report by 

Allianz Global Corporate & Specialty (AGCS), the number 
of ships entering the Arctic Polar Code area increased by 
37% (approximately 500 ships) between 2013 and 2023. 
The conditions in polar waters are challenging due to sea 
ice and hazardous weather conditions; additionally, the 
remoteness of the region limits access to rescue services 
when a ship encounters problems, as evidenced by a 
passenger ship that ran aground in Greenland in 
September 2023 and was unable to be rescued for three 
days (Allianz, 2024). The use of non-ice-class tankers in 
Arctic waters is concerning due to the insufficient 
number of icebreakers to meet the increasing demand. 
In the past, incidents of ships becoming trapped in ice 
have occurred. If a non-ice-class ship becomes trapped, 
this not only poses a risk to the potential loss of the ship 
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and crew safety but can also lead to a potential 
environmental disaster. Measures critical to enhancing 
navigational safety and maritime skills in Arctic sea 
routes are imperative (Council, 2024). Accidents result 
in environmental damage such as loss of life and oil 
spills, and at best, cause delays and disruptions in 
maritime trade (Allianz, 2024; Boylan, 2021). Therefore, 
a detailed analysis of accidents, their prevention, and 
the mitigation of potential damages are crucial for 
accurately predicting accident risks in advance. 

Few studies have been conducted on the Arctic 
regions using both machine learning techniques and 
other statistical methods. In their study, Fu et al. (2016) 
focused on predicting ship besetting in Arctic waters 
using Bayesian belief networks. Faury and Cariou (2016) 
examined the competitiveness of the Northern Sea 
Route for oil tankers, developing a decision system for 
the optimal route from Russia to Asia. Afenyo et al, 
(2017) also used Bayesian Networks to model collisions 
between icebergs and ships in Arctic waters. 
Gunnarsson (2021) explored the latest ship traffic and 
emerging maritime trends on the Northern Sea Route. 
Andersson et al. (2021) predicted icing in the Arctic 
region using deep neural networks. Study conducted by 
Kandel and Baroud (2024), focusing on eight classes of 
accident types, which were then further reduced from a 
total of 81 to 10 sub-classes. These categories included 
Equipment Failure, Loss of Control, Grounding/ 
Stranding, Collision, Contact, Fire/Explosion, Damage to 
Ship/Equipment, Capsizing/Listing, and Non-incidental 
Event. The study explored various machine learning 
techniques, although deep learning was not among 
them. 

Other than the studies focused on maritime safety 
in Arctic waters, the literature include various 
methodologies and hybrid models for analysing marine 
accidents, with an emphasis on human factors and 
probabilistic approaches. Uğurlu et al. (2020a) analysed 
collision, grounding, and sinking accidents in the Black 
Sea using the Human Factors Analysis and Classification 
System (HFACS) combined with Bayesian Networks, 
emphasized the importance of geographic and human 
factors in accident formation and suggested a Bayesian 
Network model to use preventing accidents in the Black 
Sea. Sarıalioğlu et al. (2020) adopted a hybrid approach 
involving HFACS and fuzzy fault tree analysis (FFTA) to 
analyse engine-room fires on ships, highlighted 
contributing factors such as ship age and mechanical 
fatigue. Uğurlu et al. (2020b) used Bayesian Networks 
and Chi-square methods to investigate fishing vessel 
accidents, identified a significant relationship between 
accident severity, vessel length, and loss of life, 
proposed a network model to predict the occurrence of 
fishing vessel accidents. Özaydın et al. (2022) utilized a 
hybrid model integrating Bayesian Networks and 
Association Rule Mining (ARM) to analyse unreported 
occupational accidents on Turkish fishing vessels, 
focusing on latent factors, active failures, and 
environmental conditions influencing accident 

occurrence. Göksu et al. (2024) conducted a 
probabilistic assessment of ship blackout incidents using 
Fault Tree Analysis (FTA) and Bayesian Networks, 
identifying critical causes such as voltage regulator 
failures and mechanical faults. These studies, focusing 
various areas other than Arctic waters, collectively 
underlined the importance of hybrid models and 
probabilistic approaches in understanding and 
mitigating risks in marine accidents, with an emphasis 
on human error, environmental conditions, and 
machinery failures. 

This study focused on effectively modelling and 
predicting ship accidents and their outcomes. In high-
risk scenarios, taking appropriate measures can ensure 
safer navigation, thereby preventing potential accidents 
and enhancing safety sustainability (Uğurlu et al., 2016; 
Yıldırım et al., 2019; Yildiz et al., 2022). Due to the 
challenges and limitations of mathematical modelling in 
simulating ship accidents, AI-based approaches, 
especially deep learning, real-time analysis of big data, 
and deep neural networks, offer significant potential 
(Erol et al., 2018; Fu et al., 2022; Kim and Park, 2023). 
Hence, this study employs deep learning techniques 
using neural networks developed and tested on large 
datasets. Furthermore, for the first time, a deep learning 
model has been proposed to predict whether accidents 
in the Arctic region will result in oil spills or physical 
damages in this study. The findings provide valuable 
outputs for insurance companies in calculating 
premiums, and also in creating emergency response 
plans, determining the locations of search and rescue 
stations, and developing action plans. The results of this 
study will significantly contribute to the effective 
management and reduction of risks associated with ship 
accidents, thereby helping create a safer and more 
sustainable future in the maritime sector. The deep 
learning method used in this study, although time-
consuming due to training on numerous datasets, 
results in models that once trained and shared, can 
successfully operate in new situations and produce 
accurate results. With the presented model, current 
meteorological data and the physical values of the ship 
can be used to accurately predict whether an accident 
leading to oil pollution will occur.  

The paper is structured as follows: after the 
introduction section, the dataset and methodology in 
the second section describe the data collection process 
and the development of the predictive model used for 
analysing ship accidents in the Arctic region. Then, in the 
model setup and training section, the architecture and 
training process of the deep neural network are 
detailed. The performance measurement section 
outlines the evaluation metrics and validation approach 
used to assess the model's effectiveness in the third 
section. Finally, the results section presents the 
experimental findings, and a conclusion section 
summarizes the key insights, implications, and 
recommendations for future research. 
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Dataset and methodology 
 

Dataset 
 

In this study, ship accident data created by the 
Protection of Arctic Marine Environment (PAME) 
covering the years 2005-2017 were utilized (PAME, 
2023). The mentioned data encompass records from 
Canada, Russia, Iceland, Denmark, Norway, and the 
United States (TSBC, 2024; EMCIP, 2024; GISIS, 2024; 
DMAIB, 2024; NSIA, 2024; Homeport USCG, 2024). This 
study specifically used accidents that occurred above 
the 58-degree latitude. The dataset included variables 
such as vessel length, vessel age, vessel tonnage, 
latitude, longitude, consequence of incident, and 
accident date. While vessel flag and vessel type were 
also part of the dataset, they were examined not for 
model training but for gaining insights about the data. 

The aim of the study was to develop a predictor, or 
classifier, that determines whether an oil pollution 
incident will occur or not, thus the 'Consequence of 
Incident' value was used as the output feature to 
differentiate between two classes (oil-related accidents 
and other maritime incidents occurred or not occurred). 
Since this study focused on the occurrence (whether it 
occurs or not) of marine casualties and pollutions the 
dataset did not specifically categorize types of marine oil 
pollutants as separate variables, future extensions of 
the study could incorporate this detail if relevant data 
becomes available. Such categorization would allow for 
the demonstration of the impact of different pollutant 
types on arctic marine ecosystem which may be useful 
to develop pollutant type specific pollution response 
strategies. Figure 1 presents the distribution of 
accidents according to vessel flags, types of accidents, 
vessel types, and vessel age brackets on a map. 

 
Figure 1. Map representation of accidents; (a) Distribution by vessel flag, (b) Distribution by types of accidents, (c) Distribution 

by vessel types, (d) Distribution by vessel age brackets. 
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As can be seen from the maps in Figure 1, maritime 
accidents have occurred over a wide geographic area. In 
the dataset, the values for latitude, longitude, and 
accident date were used to retrieve weather data for the 
week prior to each accident from https://open-
meteo.com/. Table 1 displays the variables used as input 
features in the construction of the model. 

As output of the system, the values of 
Consequence of Incident were used. These values are 
divided into two categories: Marine Casualty and 
Discharge of Oil. In collision accidents, if one of the ships 
has a Discharge of Oil, it is assumed that both records 
have Discharge of Oil. 

Scatter plots are graphs that clearly show how two-
dimensional data is distributed. Because of this feature, 
they are very useful in classification problems to see 
whether a linear classifier can be used (Schulz et al., 
2019). Figure 2 contains six scatter diagrams selected 
from ship tonnage, age, and temperature values. When 
the data are examined in pairs on the scatter diagrams, 
it can be seen that the data cannot be separated linearly. 
This indicates that the data can only be separated by a 
non-linear classifier (Ghosh et al., 2019). 

This graph also indicates that the feature values are 
close to each other, making separation difficult. All these 
observations have led us to use deep neural networks, a 
non-linear classifier, for classification. 
 
 

Model Setup and Training 
 

In this study, a network structure trained with deep 
neural network architecture was used. A deep neural 
network is a general term for networks that have many 
hidden layers with special transfer functions and 
optimization methods (Abdolrasol et al., 2021). 

Deep learning allows computational models that 
are composed of multiple processing layers to learn 
representations of data with multiple levels of 
abstraction (Goodfellow et al., 2016; LeCun et al., 2015). 
To test the success of the generated models, the F1 
score was used. The F1 score is a method often used in 
situations where class values are imbalanced, meaning 
one class has many elements while the other class has 
few elements (Wardhani et al., 2019). 
 
Deep Neural Network Structure 
 

In the study, a neural network structure with two 
hidden layers containing 500 and 100 cells respectively 
was developed. The activation functions for these layers 
are Relu and Tanh, respectively. The Sigmoid function 
was chosen for the output layer (Szandała, 2021; 
Nwankpa et al., 2018). The formulas for Relu (1), Tanh 
(2), and Sigmoid (3) are expressed as follows. 

 
 

Table 1. Features used for training the neural network 

Feature Name Explanation 

Vessel Length The length of ship in feet (ft). 
Vessel Age Ship’s age in years. 
Vessel Tonnage Ships capacity in gross tonnage. 
Last Day Lowest Temperature Lowest temperature at the accident site on the day of accident (centigrade) 
Last Day Highest Temperature Highest temperature at the accident site on the day of accident (centigrade) 
Last Day Average Temperature Average temperature at the accident site on the day of accident (centigrade) 
Weekly Lowest Temperature Lowest temperature at the accident site in the week of accident (centigrade) 
Weekly Highest Temperature Highest temperature at the accident site in the week of accident (centigrade) 
Weekly Average Temperature Average temperature at the accident site in the week of accident (centigrade) 
 
 
 
 

 
Figure 2. Scatter values for marine casualty - discharge of oil for sample input values. 
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𝑓(𝑥) = 𝒎𝒂𝒙(0, 𝑥) =
𝑥 + |𝑥| 

2
= {

𝑥 𝑖𝑓 𝑥 > 0
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
(1) 

𝑓(𝑥) = 𝒕𝒂𝒏𝒉(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

(2) 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

(3) 

 
The graphical representation of these functions are 

shown in Figure 3. 
During the training of the network, Adaptive 

Moment Estimation (Adam) optimization was used. This 
optimization technique is one of the most commonly 
used methods in modern deep network architectures. 
The binary cross-entropy method was used as the loss 
function (Wang and Lo, 2020). The formula for this 
function is shown in Eq. 4, where y is the label (1 for 
green points and 0 for red points) and p(y) is the 
predicted probability of the point being green for all N 
points. 
 
Hp(q) =  −

1

𝑁
∑ yi. log(p(yi)) + (1 − yi). log(1 − p(yi))𝑁

𝑖=1  (4) 

The configuration of the network developed for 
four inputs is shown in the Figure 4. The intermediate 
layer structure and the number of neurons is the same 
for all input combinations 
 
K-Fold Cross Validation 
 

In the machine learning approach, the dataset is 
generally divided into two parts: training and testing. 
Then, the training set is further divided into sub-training 
and validation sets (Figure 5). The system is trained on 
the sub-training data, and the success of this model is 
measured on the validation data set. This process can be 
repeated until the desired success rate is achieved. 
Finally, the model that has achieved the desired success 
is applied to the test data to obtain the actual 
performance. The true performance is the success on 
this test data. 

There are different approaches to training the 
model with sub-training and validation sets. In this 
study, one of the most commonly used methods, the K-
fold cross-validation approach, was adopted 
(Alrumaidhi et al., 2023). In this approach, the dataset is 
divided into 𝑘 equal parts. Each time, 𝑘 − 1 parts are 

 
Figure 3. Activation functions. 
 

 

 

 

Figure 4. The architecture of the network generated for the input. 
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used for sub-training and 1 part is used for validation 
(Pal and Patel, 2020). The average of the validation 
successes obtained at each step is considered the 
overall performance of the model.  
 
Performance Measurement 
 

The F1 score, developed by Van Rijsbergen (1979), 
is a reliable measure frequently used in statistical 
analysis. The F1 score was also employed in this study, 
relying on four measurements: true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN). 
True positive denotes instances where the model 
correctly diagnoses positivity, and true negative 
represents accurate negative diagnoses. False positives 
occur when the model wrongly identifies positivity, 
whereas false negatives arise from incorrect negative 
diagnoses. The F1 score calculation involves two 
essential metrics: precision (5) and sensitivity (6). And 
also flow chart of the methodology is presented in 
Figure 6. 

 

 
Figure 5. Splitting the dataset. 
 

 

 

 

Figure 6. Flow chart of the methodology. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 

 

 

𝑆𝑒𝑛𝑠𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(6) 
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 +  𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 (7) 

 
 

Utilizing these considerations, the F1 criterion is 
computed using formula (8). 

 

𝐹1 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑆𝑒𝑛𝑠𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑣𝑖𝑡𝑦
=  

2 ∗ 𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (8) 

 

Results 
 

The source code was written in Python using the 
Keras library (Lynch, 2023). The data was split into two 
parts: 70% for training and 30% for testing. The training 
data was used to train the model with a 10-fold cross-
validation approach for 𝑘 = 10. Experiments were 
conducted for 511 different input-output combinations 
of the nine input values (from 1 to 9) shown in Table 1. 
Figure 7 shows the changes in F1 and accuracy metrics 
during training for a sample with nine inputs. 

For each combination, 1000 experiments were 
conducted, and the average and standard deviation of 
the F1 scores on the test data were reported. The 
average test F1 values, the standard deviations of the F1 
values, and the average accuracy values of the networks 
with a single input are presented in Table 2. 

 

Figure 7. F1 and accuracy values obtained during a sample training session. 
 

 

 

Table 2. Performance metrics for single-input deep networks  

Feature Average Test F1 Standard Deviation Average Accuracy 

VT 0.28 0.39 0.12 
VL 0.29 0.52 0.14 
VA 0.31 0.45 0.15 
WL 0.35 0.40 0.16 
WH 0.32 0.39 0.16 
WA 0.33 0.40 0.13 
LDL 0.32 0.39 0.14 
VT: Vessel Tonnage, VL: Vessel Length, VA: Vessel Age, WL: Week Low, WH: Week High, WA: Week Average, LDL: Last Day Low, LDH: Last Day High, 
LDA: Last Day Average 
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From these values, it can be seen that the highest 
performance is given by the Vessel Age (VA) value. 
However, this performance is very low. Each feature 
alone has a high standard deviation value and is not 
sufficient to successfully represent the system on its 
own. Figure 8 shows the average F1, accuracy, and 
standard deviation values obtained by removing each 
attribute individually from the entire set of attributes. 

As expected, the combination using all features 
(VT, VL, VA, LDA, LDL, LDH, WA, WL, WH) achieved the 
highest success rate. Additionally, the standard 
deviation value is quite low. When the WA and WH 
parameters were removed, the success rate decreased 
by 0.89 to 0.87, and the standard deviation value 
approximately doubled. This indicates that the obtained 
success became more unstable. 

Subsequently, with the removal of the Weekly 
Lowest Temperature (WL) parameter, the success rate 
increased by 0.03 to 0.84, and the standard deviation 
increased to 0.35. A dramatic fall in success was 
observed with the removal of the LDH parameter. 
Removing the SGED value caused the success rate to 
decline to 0.78. 

In general, as examined the situation, and also as 
expected, removing parameters decreased the success 

rate and increased the standard deviation, in other 
words, the instability. 

As shown in Figure 8, when all input parameters 
are used, it can be predicted the likelihood of an 
environmental pollution or physical malfunction 
occurring in a ship accident in the Arctic region with an 
89% F1 success rate. 

Kandel and Baroud (2024) have used various 
machine learning models in their studies. They 
developed models to predict the type of damage a ship 
accident would cause based on the damage to the ship. 
In their study, a maximum success rate of 0.514 was 
achieved for 8 class values. In contrast, this study 
focused on predicting the environmental damage 
caused by the accident and achieved a maximum F1 
success rate of 0.89 for 2 classes using deep learning. 

Figure 8 shows the F1, Accuracy, and Standard 
Deviation of F1 values together. Generally, it can be 
observed that as features are removed, the success rate 
decreases, and the standard deviation increases. 

It is notable that when the LDL value is also 
removed from the features, although the success rate 
decreases, the standard deviation does not increase. 
This is a thought-provoking situation. It can be explained 
by the fact that the system remains consistently at a 

 

Feature Names (X: used, -: not used) 
Average 
Test Ac 

Average Test 
F1 

Standard 
Deviation 

VT VL VA LDL LDA LDH WL WA WH  
X X X X X X X X X 0.76 0.89 0.12 
X X X X X X X X - 0.74 0.87 0.15 
X X X X X X X - - 0.73 0.87 0.23 
X X X X X X - - - 0.72 0.84 0.28 
X X X X X - - - - 0.71 0.82 0.32 
X X X X - - - - - 0.67 0.79 0.35 
X X X - - - - - - 0.61 0.59 0.42 
X X - - - - - - - 0.45 0.39 0.40 
X - - - - - - - - 0.24 0.28 0.39 

Figure 8. Top six input combinations by performance metrics, accuracy and standard deviation values obtained by removing 
features. 
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lower performance level and high performance is less 
frequently achieved, leading to a more stable (but 
lower-performing) model. 

The study presented the feasible application of 
deep learning methods to predict oil pollution incidents 
from ship accidents in the Arctic region with a high 
degree of accuracy. The developed neural network 
model achieved a maximum F1 score of 0.89, which 
indicates strong predictive performance when all input 
features were utilized. Importantly, the results highlight 
the critical role of specific features such as vessel age, 
vessel length, and environmental conditions in 
determining the likelihood of pollution incidents. 
Removing key features not only reduced the F1 score 
but also increased the standard deviation, emphasizing 
the instability introduced by excluding relevant 
parameters. The results suggest that the methodology 
and insights may serve multiple practical purposes as 
follows. 

Predictive modelling: The developed model can be 
utilized by maritime regulatory bodies and insurers to 
assess risk levels and prioritize monitoring efforts in 
high-risk scenarios. 

Multi factor evaluation: The analysis of feature 
importance provides actionable insights for improving 
data collection practices, particularly emphasizing the 
inclusion of high-impact features like weather 
conditions and vessel characteristics in future datasets 
to use the model for decision-making support tool. The 
findings support the development of a robust decision-
support system that integrates predictive capabilities 
with real-time data to reduce the number of accidents 
and mitigate the environmental impact of shipping 
operations in vulnerable regions like the Arctic. The 
model can be adapted to various other regions such as 
narrow straits, close coastal navigation where heavy 
weather and sea conditions is a prevalent factor. 

Higher accuracy: Proposed approach 
outperformed existing methodologies cited in the 
literature, such as those by Kandel and Baroud (2024), 
which achieved a maximum F1 score of 0.514 for a multi-
class problem. By focusing on binary classification and 
leveraging deep learning techniques, this study offers a 
significantly improved predictive framework for 
addressing environmental challenges in maritime 
operations. 
 

Discussion 
 

The findings indicate the promising potential of 
deep learning methods in predicting environmental risks 
associated with maritime accidents, particularly in 
vulnerable regions like the Arctic waters. The developed 
model demonstrated strong predictive performance, 
achieving an F1 score of 0.89, which are higher than the 
earlier research results, i.e. Kandel and Baroud (2024) 
reported a maximum F1 score of 0.514 when predicting 
damage categories in maritime accidents using 
traditional machine learning methods. This contrast 

highlights the advantage of leveraging deep learning for 
binary classification tasks, where the focus on specific 
outcomes such as pollution likelihood enables more 
precise predictions. The comparison to Kandel and 
Baroud's work particularly highlights the advantage of 
the proposed two-stage feature selection process, 
which effectively captures critical Risk Influential Factors 
(RIFs), allowing for higher predictive performance and 
improved model robustness. 

The analysis of feature importance revealed the 
critical role of variables such as vessel age, vessel length, 
and environmental conditions in the model's success. 
Removing high-impact features, such as Weekly Average 
(WA) and Weekly High (WH) temperatures, resulted in 
notable reductions in the F1 score and increased 
standard deviation, reflecting heightened instability in 
model predictions. These findings align with research by 
Goodfellow et al. (2016), which emphasized the 
importance of comprehensive feature sets in achieving 
consistent performance in machine learning models. 
The findings also corroborate with Feng et al. (2024), 
who introduced a novel two-stage feature selection 
approach, combining feature interaction analysis and 
state-differentiated mutual information, to ensure the 
stability and robustness of predictive models by 
retaining the most influential features. However, the 
removal of the Lowest Daily Level (LDL) did not increase 
variability despite a reduction in accuracy, suggesting a 
unique interaction among features. Feng et al. (2024) 
similarly highlighted the complex interplay between 
feature redundancy and model stability, underscoring 
the need for robust feature selection processes. 

The presented model can serve as a decision-
support tool for maritime regulators, insurers, and 
operators, aiding in risk assessment and resource 
allocation for high-risk scenarios. The emphasis on 
feature importance also highlights the necessity of 
improving data collection practices in maritime safety, 
particularly regarding environmental conditions and 
vessel-specific characteristics. Furthermore, the model's 
adaptability to diverse operational contexts, such as 
narrow straits or heavy-weather navigation zones, 
offers additional utility, as demonstrated in context-
aware predictive models for maritime safety (Zhang et 
al., 2021). The approach parallels the methodology 
outlined by Feng et al. (2024), wherein the LightGBM 
model was used as a benchmark for accurately 
predicting the severity of marine accidents, focusing on 
a holistic feature selection and stability evaluation 
framework to optimize decision-support capabilities. 

Despite its success, the study’s limitations must be 
acknowledged. The binary classification framework, 
while effective, simplifies the complexity of real-world 
scenarios. Future research could explore multi-class 
problems to capture more granular environmental 
outcomes. Additionally, the dataset's focus on Arctic 
conditions limits its generalizability to other regions. 
Expanding the model to diverse maritime contexts will 
require further validation and adaptation. Feng et al. 
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(2024) also pointed out similar limitations in their study. 
Furthermore, the application of explainable techniques, 
as suggested by Gunning et al. (2019), could enhance the 
interpretability of model predictions, making them more 
accessible to practitioners and regulators. 
 

Conclusion 
 

This study presents the results of experimental 
analyses conducted on models written in Python using 
the Keras library, with data split into 70% training and 
30% testing, employing a k-fold cross-validation 
approach. The analyses were performed on 511 
different input-output combinations, with 1000 trials for 
each. The findings indicate that certain features, such as 
the ship's tonnage, length, and age, play a critical role in 
predicting ship accidents. The results show that the 
highest F1 score and lowest standard deviation were 
achieved when all features were used. Notably, when 
some features, like the minimum daily temperature in 
the navigation area, were removed, a significant 
decrease in model performance was observed, 
indicating their importance for the model. However, the 
impact on the model's overall stability was observed as 
an increasing standard deviation with the removal of 
more features. 

Whilst examining the results in Figure 8 in detail, it 
is evident that considering the ship's physical size and 
age independently of the climate results in lower F1 
scores and average performance. This indicates that the 
ship's physical size alone is not sufficient. A model that 
evaluates data together with daily minimum 
temperature values produces more reliable results. This 
suggests that a model produced in conjunction with 
weather forecasts is more successful in Arctic regions. 

Ships traveling to the Arctic region and 
organizations inspecting these ships can use this model 
for predictions. It can measure whether accidents will 
have an environmental impact. This enables 
organizations to assign ships with lower environmental 
risks. Moreover, it can significantly contribute to 
calculating accident risks and determining insurance 
premiums by insurance companies. 

The limitations of the study are related to the 
scope and quality of the dataset used. Missing or 
incorrect data in the dataset can affect the model's 
overall accuracy and reliability. Therefore, the marine 
casualty investigation reports should be as 
comprehensive as possible as specified in the revised 
guidelines of the IMO (IMO, 2014).  Additionally, the 
generalizability of the model may be limited by the 
diversity of the dataset used. Since this study was 
conducted on a specific dataset, the model's 
performance may vary under different datasets or 
conditions. To address these data quality issues in the 
future, several specific measures could be implemented. 
Data augmentation techniques could be employed to 
artificially increase the size and diversity of the training 
dataset, thereby enhancing the model's robustness. 

Additionally, imputation techniques, such as K-Nearest 
Neighbors (KNN) or Multiple Imputation by Chained 
Equations (MICE), could be used to handle missing data 
more effectively, reducing the potential biases 
introduced by incomplete information. Collaborations 
with maritime organizations, regulatory bodies, or data 
providers could also be explored to obtain more 
granular and diverse datasets, further improving the 
model's generalizability and resilience to different 
operational conditions. Integrating real-time data feeds 
from monitoring systems or sensor networks could 
provide higher-quality, up-to-date information, 
contributing to more accurate predictions and a more 
reliable decision-support tool. Furthermore, sea ice 
conditions are a critical factor influencing maritime 
navigation, particularly in Arctic regions. The presence 
and extent of sea ice can significantly affect vessel 
manoeuvrability, operational risks, and accident 
causality. While this study analysed 511 accident reports 
to explore contributing factors to maritime incidents, 
the variability in the level of detail across these reports 
limited the ability to incorporate sea ice conditions as a 
separate variable. Many reports did not include 
sufficient detail on ice conditions and its specific role in 
the accidents, resulting in a difficulty to add it in 
machine learning models. 

For future studies, it is recommended to integrate 
additional data sources to increase the model's 
robustness and test its applicability on broader datasets. 
More extensive tests should be conducted to evaluate 
the model's effectiveness under different maritime 
conditions and for various types of ships. By focusing on 
specific ship types, such as non-ice-class ships, special 
risk mitigation strategies can be developed for these 
vessels. Finally, implementing regulations such as the 
Polar Code and integrating these regulations into model 
predictions could significantly enhance the model's 
applicability and provide valuable insights for 
policymakers. Incorporating specific aspects of the Polar 
Code, such as requirements related to ship structure, 
equipment, crew training, and voyage planning, could 
improve the model's capacity to predict safety risks in 
Arctic navigation. For instance, integrating structural 
regulations aimed at strengthening vessels to withstand 
ice conditions could refine the model's assessment of 
vessel resilience in polar environments. Likewise, 
incorporating the Polar Code’s mandatory training 
standards for crew would enable the model to account 
for human factors, such as the competency of the crew 
in handling emergencies unique to polar waters. 
Moreover, adding voyage planning requirements that 
consider ice conditions, weather, and available search 
and rescue resources could improve the predictive 
accuracy of potential navigational hazards. By including 
these detailed regulatory elements, the model could 
assist policymakers in evaluating the effectiveness of 
current safety measures, identifying areas for regulatory 
enhancement, and developing informed policies that 
support safer Arctic maritime operations. 
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