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Abstract 
 
The present study aimed to determine the abundance index of blue marlin, Makaira 
nigricans (Lacepède, 1802) utilizing fishery-independent data, i.e., scientific observer, 
and attempted to bridge the research's gap for low coverage information in the 
northeastern Indian Ocean. A total of 2,984 set-by-set observer data from 2006-2018, 
spatially disaggregated by one-degree blocks, were obtained from the Indonesian 
scientific observer program following commercial longline fleets. A delta-lognormal 
model was chosen to fit the dataset, using catch as the response variable with seven 
covariates. A backward procedure based on AIC, BIC and R2 were used to select the 
best model. Overall, the delta-Gamma performs better when modelling data with a 
high proportion of zeros than other traditional models. The blue marlin CPUE trend is 
relatively stable over time, despite the inter-annual fluctuations, which are likely a 
result of natural variation in the population as opposed to operational changes or 
inter-annual environmental variation. Given the low spatial coverage compared to 
logbook data, scientific observer data performed well and produced a robust 
abundance index of blue marlin in the northeastern Indian Ocean. 

 

Introduction 
 

Relative indices of abundance, such as catch-per-
unit-effort (CPUE), are generally developed from 
fishery-dependent data (e.g., logbook data), which is 
considered to be a reliable source (Carruthers et al., 
2011; Fonteneau & Richard, 2003; Maunder & Punt, 
2004). However, fleet-specific behaviour and changes 
thereof complicates the development of abundance 
indices. In such cases, expert knowledge regarding 
changes in fleet dynamics and how such changes may 
influence the logbook data received by scientists is 
paramount to developing indices that accurately depict 
true fish abundance.  

In the case of Indonesian tuna and tuna-like 
fisheries, establishing fishery-dependent data to model 
the relative abundance indices is still a major challenge. 
Although the Ministry of Marine Affairs and Fisheries 
(MMAF) reiterated the obligation of logbook data 
collection, especially for tuna longline fleets in 2010 
(Sunoko & Huang, 2014), low compliance from fishers 
means this data has failed to capture the fisheries 
dynamics. Despite improvements having been made, 
such as the introduction of electronic form of logbook in 
early 2014 (Nugroho et al., 2017), the level of coverage 
remains below 10% (Geehan, 2018) and the data would 
not be adequate for analysis until it reaches the level of 
consistency for an extended time. 
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Therefore, finding an alternative data source is 
essential, considering the importance of Indonesian 
tuna and tuna-like fisheries in the northeastern Indian 
Ocean. In 2005 a joint research initiative between 
Indonesia and Australia (ACIAR Project FIS/2002/074) 
initiated a trial of scientific observer program for the 
Indonesian tuna longline fishery (Proctor et al., 2011), 
which the Research Institute subsequently adopted for 
Tuna Fisheries (RITF) in 2011. The program initially 
intended to provide information additional to logbook 
data but has become the primary source information for 
modelling the abundance of tuna and tuna-like species, 
especially for marlins species (Hartaty, Setyadji, & 
Fahmi, 2019; Hartaty, Setyadji, Nishida, et al., 2019; 
Jatmiko et al., 2019; Rochman et al., 2017; Setyadji, 
Andrade, et al., 2018; Setyadji & Fahmi, 2020).       

Blue marlin Makaira nigricans (Lacépède, 1802) 
was chosen as the specific interest as it is considered a 
vital non-target species from industrial and artisanal 
fisheries worldwide. The total reported global catch 
exceeded 38,000 tons in 2013, wherein the most 
significant proportion (~95%) was harvested from the 
Pacific and Indian oceans. Less than  5% came from the 
Atlantic Ocean (Chen et al., 2016). In the Indian Ocean, 
the catch trend has steadily increased since the 1980s, 
with longline fisheries accounting for most catch (70%), 
followed by gillnet and troll/hand line (IOTC-WPB17, 
2019). Previously, the contribution from the Indonesian 
fleet during the period 2013-2017 was thought to be 
around 30% (~3,900 tons) of the total catch in the Indian 
Ocean, ranked second after the Taiwanese fleet (IOTC-
WPB16, 2018). However, these catches were revised to 
~865 MT (9%) to refine the methodology to estimate 
catch (IOTC-WPDCS14, 2018).  

Blue marlin stocks are overexploited (ICCAT, 2018; 
IOTC-WPB17, 2019; ISC, 2016; Pons et al., 2017). The 

2019 assessment of the Indian Ocean blue marlin stock 
strongly indicated the stock was overfished and subject 
to overfishing (IOTC-WPB17 2019). Assessment 
predictions advised a high probability (>80%) of violating 
the MSY-based reference points in the following ten 
years if the high catch levels were maintained (IOTC-
WPB17, 2019). However, uncertainty in abundance 
indices and nominal catches, especially in the 
northeastern Indian Ocean where the Indonesian 
longline fleet traditionally operated, was identified as a 
concern when evaluating the stock status based on the 
applied assessment approaches.  

The northeastern Indian Ocean is a productive 
fishing area concerning blue marlin catches but is often 
poorly represented in their assessment due to the low 
coverage of catch data. This study aims to address this 
by producing a blue marlin abundance index for the 
region using fishery-independent data from the 
Indonesian Observer Program. Such an index would 
undoubtedly help assess the stock of blue marlin, which 
is a vital fishery resource in the Indian Ocean. 
 

Materials and Methods 
 

At the highest spatial resolution, a total of 2,984 
shot by shot catch and effort data from January 2006 to 
December 2018 were obtained from the Indonesian 
scientific observer programme, which covers 
commercial tuna longline vessels. The length of fishing 
trips ranged from three weeks to three months. The 
main fishing grounds cover the western and southern 
part of Indonesian waters, extending from 75o E to 35o S 
(Figure 1). The catch rate was expressed as the number 
of blue marlins caught per 1000 hooks. In addition, to 
catch and effort information, each daily record also 
included temporal (year and month) and spatial 

 
Figure 1.  Map of the fishing area where the observer data were collected. After filtering the data, the northeastern (NE) area was 
the only area used for analysis. 
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information (latitude and longitude) based on where the 
set is commenced. The covariates included in the 
analyses were selected based on their likely impact on 
the catch-rate of blue marlin, as recorded by previous 
studies (Fonteneau & Richard, 2003; Yokoi et al., 2016; 
Zhou et al., 2019). These covariates are Year, Quarter, 
Number of Hooks Between Floats (HBF), Soak Time, Start 
Set, and Moon Phase. Both Year and Quarter were used 
as categorical (factor) explanatory variables. HBF was 
set as continuous instead of categorical since both 
approaches resulted in similar results (Setyadji & Fahmi, 
2020). 

On the other hand, Soak time was calculated as the 
time elapsed between the start of the longline setting 
and the beginning of hauling off the longline and 
rounded to the nearest integer, and also set as a 
continuous variable. Start Set was included in the model 
to account for diurnal variation in fishing. Moon Phase, 
introduced as a daily (where the set is commenced) 
index of moon fraction between 0 (new moon) and 1 
(full moon), was calculated using a lunar package 
(Lazaridis, 2014). To account for the effect of cyclic 
behaviour, the Moon Phase was defined by the 
following function (Sadiyah et al., 2012): 

𝑀𝑜𝑜𝑛 = 𝑠𝑖𝑛(2𝜋 𝑥 𝑚𝑜𝑜𝑛 𝑝ℎ𝑎𝑠𝑒) +
𝑐𝑜𝑠(2𝜋 𝑥 𝑚𝑜𝑜𝑛 𝑝ℎ𝑎𝑠𝑒)  1) 

 
Data Filtering 
 

Catch data for billfishes from the Indonesian tuna 
longline fishery inherently has a high proportion of zero-
catch-per-set occurrence (Setyadji, Andrade, et al., 
2018). It was acknowledged that the predominance of 
zero catches could be driving the previous model 
outputs as the CPUE trends do not appear to be 
biologically plausible (IOTC-WPB16, 2018). Initially, the 
mean annual proportion of zero catches from the data 
was approximately 91%. In an attempt to reduce it, 
three filters were applied to the data: 
1. Data collected in 2005 were excluded from analysis, 

as it was the beginning of the trial scientific 
observer program and therefore it might contain 
species misidentification; 

2. Spatial coverage of the scientific observer data, 
from the northeastern to the southeastern Indian 
Ocean, ranged from 0o-33o S and 75o-129o E (Figure 
1). However, the temporal coverage was not 
completed for the data collected in the southern 
areas. Moreover, the positive sets for blue marlin 
were concentrated in the northeastern region. 
Therefore, the data used for analysis was limited to 
the area north of 17.5o S or northeastern area (NE) 
according to the IOTC statistical areas applied to 
swordfish (Nishida & Wang, 2006) (Figure 1); 

3. Data were subset only to include trips where one or 
more blue marlin was caught.  
 

Modelling Approach  
 

Previous studies suggested that although 
conventional model distributions such as Poisson, 
negative binomial, zero-inflated, and hurdle could be 
used for modelling zero-inflated catch data, caution 
should be applied when interpreting the model outputs 
(Jatmiko et al., 2017; Setyadji, Andrade, et al., 2018; 
Setyadji et al., 2017). Therefore, a generalized linear 
model (GLM) with an assumed delta-gamma 
distribution was applied to standardize the blue marlin 
CPUE from the Indonesian tuna longline fishery. Since it 
has been proven better to model by-catch species, i.e. 
marlins, catch data usually consist of a high proportion 
of zeros (Campbell et al., 2017; Wang, 2018).  

The model was run with the following variables: 
Year, Quarter, HBF, Moon, Soak Time and Start Set. To 
avoid overfitting, no interactions among variables were 
included. Therefore, the gamma and delta components 
of the GLM were conducted as follows: 

Gamma model for CPUE of positive catch: 
 

log(𝐶𝑃𝑈𝐸) = 𝜇 + 𝑌𝑒𝑎𝑟 + 𝑄𝑢𝑎𝑟𝑡𝑒𝑟 + 𝐻𝐵𝐹 +𝑀𝑜𝑜𝑛
+ 𝑆𝑜𝑎𝑘 𝑇𝑖𝑚𝑒 + 𝑆𝑡𝑎𝑟𝑡 𝑆𝑒𝑡 + 𝜀𝑔𝑎𝑚𝑚𝑎 2) 

 
Delta model for presence and absence of catch:  
 

P/A = 𝜇 + 𝑌𝑒𝑎𝑟 + 𝑄𝑢𝑎𝑟𝑡𝑒𝑟 + 𝐻𝐵𝐹 +𝑀𝑜𝑜𝑛 + 𝑆𝑜𝑎𝑘 𝑇𝑖𝑚𝑒
+ 𝑆𝑡𝑎𝑟𝑡 𝑆𝑒𝑡 + 𝜀𝑑𝑒𝑙 3) 

 

Table 1.  Probability models and hypotheses about the capture probability of catch (P) for CPUE standardization, including the 
probability mass or density function for the catch, and the hypothesis about nominal catches, for the negative binomial, zero-
inflated negative binomial, Tweedie and delta-Gamma distributions (Rose et al., 2006; Saffari et al., 2012; Walsh & Brodziak, 2014). 

Probability model Probability function Hypothesis 

Negative Binomial 𝑃(𝑌 = 𝑦) =
𝛤(𝑦+1/𝑎)

𝛤(𝑦+1)𝛤(1/𝑎)
 .

(𝑎µ)𝑦

(1+𝑎µ)𝑦+1/𝑎
  Nominal catches are 

overdispersed 

Zero-inflated Negative 
Binomial 

𝑃(𝑌 = 𝑦) =

{
 

 𝑝 + (1 − 𝑝)
1

(1+𝛼µ)
1
𝛼

           𝑦 = 0

  (1 − 𝑝)
𝛤(𝑦+

1

𝛼
)

𝛤(𝑦+1).𝛤(
1

𝛼
)
.

𝛼µ𝑦

(1+𝛼µ)𝑦+
1
𝛼

    𝑦 > 0         
  

Nominal catches are 
overdispersed with an excess 

of zeros 

Tweedie 𝑃(𝑌: 𝜇, 𝜎2, 𝑝) =  𝑎(𝑦: 𝜇, 𝜎2, 𝑝) 𝑒𝑥𝑝 {−
1

2𝜎2
 𝑑(𝑦: 𝜇, 𝑝)}   

Nominal catches are 
overdispersed with an excess 

of zeros 

Delta-Gamma 

𝑃(𝑌 = 0) = 1 –  𝑝 

𝑃(𝑌 = 𝑦|𝑦 > 0) =  𝑝 × (
𝜆𝛼𝑦𝛼−1 × 𝑒𝑥𝑝(−𝜆𝑦)

𝛤(𝛼)
) 

Nominal catches are either 
overdispersed or under 

dispersed 
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We applied a stepwise approach for model 
selection, starting with a null model and incorporating 
variables one at a time and only selecting the variable 
that produced the lowest model residual deviance. This 
approach was repeated until model residual deviance 
did not decrease as new variables were added. Finally, 
explanatory variables were selected through a backward 
procedure based on Akaike Information Criterion (AIC) 
(Akaike, 1974), Bayesian Information Criterion (BIC) 
(Schwarz, 1978) and the values of the coefficient of 
determination (R2). Results from models with 
alternative error distributions, such as Tweedie, zero-
inflated negative binomial, and simple negative 
binomial were also considered in this study for 
comparative purposes (Table 1).   

The area-specific standardized CPUE trends were 
estimated based on the exponent of the year's adjusted 
means (least-square means) effects (Butterworth, 1996; 
Maunder & Punt, 2004). The standardized relative 
abundance index was calculated by the product of the 
standardized CPUE of positive catches and the 
standardized probability of positive catches: 

 

𝑖𝑛𝑑𝑒𝑥 =  𝑒log (𝐶𝑃𝑈𝐸) (
𝑒�̃�

1 + 𝑒�̃�
) 4) 

 

Where CPUE is the adjusting means (least-square 

means) of the year effect of the gamma model and �̃� is 
the adjusted means (least-square means) of the year 
effect of the delta model. 

Maps were produced using QGIS version 3.11 
(QGIS Developer Team, 2020) and the statistical 
analyses were carried out using R software version 3.6.0 
(R Core Team, 2018). 
 

Results 
 

Before data filtering, the initial combined dataset 
contained 112 trips, 2,984 sets, and almost 4 million 
hooks deployed. Post filtering procedures, the number 
of trips approximately halved. The mean observed sets 
deployed was 101.1 (45.8) per year or 21.4 (6.8) per trip. 
The total number of hooks observed was 1.6 million, 
with approximately 1200 hooks deployed every set 
using a configuration of 11 or more hooks between 
floats (Table 2). As a result of applying data filtering, the 
proportion of zero-catch-per-set decreased by 6%.  

In general, the nominal catches of blue marlin from 
the tropical areas have been relatively stable since 2006, 
except in 2012 when catches were notably high (0.44 
(0.09)) fish per 1000 hooks) (Figure 2). The positive 

Table 2. Summary of the annual observed fishing effort from the Indonesian tuna longline fishery for 2006–2018 (post-filtering). 
Values represented in means and standard error showed in parenthesis. 

Year Trips Sets Total Hooks Hooks per Set Hooks per Float 

2006 8 153 220,432 1,391.6 (21.18) 11.8 (0.06) 
2007 3 41 66,577 1,522.5 (35.29) 16.1 (0.04) 
2008 8 155 182,583 1,389.6 (23.12) 11.6 (0.03) 
2009 5 154 181,911 1,199.2 (10.22) 11.4 (0.00) 
2010 6 119 151,787 1,242.0 (20.39) 12.7 (0.11) 
2011 3 105 110,384 1,046.2 (18.03) 12.0 (0.00) 
2012 4 69 76,008 1,263.2 (25.38) 12.8 (0.00) 
2013 6 163 176,456 1,112.7 (13.36) 12.1 (0.08) 
2014 5 65 74,779 1,222.6 (11.38) 14.2 (0.01) 
2015 2 32 40,261 1,161.1 (15.25) 12.9 (0.25) 
2016 3 88 109,064 1,222.1 (10.87) 12.7 (0.09) 
2017 4 60 65,348 996.4 (15.66) 13.8 (0.03) 
2018 5 110 144,764 1,308.2 (15.93) 14.8 (0.13) 

 
 
 

 
Figure 2. Nominal CPUE series (N/1000 hooks) for blue marlin caught in the Indonesian tuna longline fleet from 2006 to 2018. 
Vertical bars refer to the standard errors. 
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anomaly in that particular year is thought to result from 
data filtering procedures, which caused deletion on 
some trips without blue marlin catch. Hence the 
remaining data consist of fortunately high catch at 
relatively low effort, which caused the spike instead of 
changes in true abundance. The lowest CPUE recorded 
was in 2007 (0.042 (0.02)) with average 0.16 (0.04) per 
year. The proportion of zero catch sets varied annually 
between 71.01% in 2012 and 93.70% in 2016, with an 
average value of 85.24% (Figure 3). 

All retained effects were statistically significant, 
except for Moon Phase.  Soak Time was excluded from 
both models as it had negligible influence. The deviance 
tables for selected Gamma models are shown in Table 3. 
The results indicated that Year was the most influential 
variable when modelling the positive catch of blue 
marlin, followed by targeting (HBF), season (Quarter) 
(Table 3). Moon Phase and Start Set were shown to have 

little effect on positive catches. As for the delta model, 
the results were quite similar, with year again proving to 
be the most crucial factor (Table 4). However, unlike the 
gamma model, the start set had considerable influence 
contributing to the probability of successful capture.   

A comparison of standardized CPUE trends for the 
period 2006 - 2018, as calculated using delta-gamma 
(DELTA), negative binomial (NB), zero-inflated negative 
binomial (ZINB) and Tweedie (TWEEDIE) models, 
produced relatively similar outputs (Figure 4). In 
general, the trend is stable from 2006-2010, increases 
drastically after that and peaks in 2012, after which it 
decreases again. The DELTA model produced a 
smoother trend with better model performance and 
was chosen as it is likely to better account for the high 
proportion of zero catches in the data (Figure 5 and 
Table 5).  

 

 
Figure 3. The proportion of zero blue marlin catches observed from the Indonesian tuna longline fleet for 2006 - 2018. Vertical 
bars refer to the standard errors. 

 
 
 

Table 3. Deviance table documenting the relative importance of the explanatory variables included in the gamma model  
 

Variable Df Deviance Resid. Df. Resid. Deviance F    Pr(>F)  
NULL  

 
230 39.376 

  
 

Year 12 6.790 218 32.586 3.4886 0.0001018 *** 
Quarter 3 1.709 215 30.877 3.5125 0.0161207 * 
HBF 1 1.224 214 29.653 7.5447 0.0065364 ** 
Moon 1 0.467 213 29.186 2.8812 0.0910855 . 
Start_Set 1 0.606 212 28.580 3.7389 0.0544919 . 

Significant codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
 
 

Table 4. Deviance table documenting the relative importance of the explanatory variables included in the delta model 
 

Variable Df Deviance Resid. Df. Resid. Deviance          Pr(>F)  
NULL 

  
1571 1312.2 

 
 

Year 12 46.328 1559 1265.9 0.00006 *** 
Quarter 3 8.774 1556 1257.1 0.03245 * 
HBF 1 5.542 1555 1251.6 0.01857 * 
Moon 1 2.247 1554 1249.3 0.13388  
Start_Set 1 4.235 1553 1245.1 0.03960 * 

Significant codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Discussion 
 

Fisheries dependent data (e.g., logbook) is 
preferred information for deriving relative abundance 
indices for tuna and tuna-like fisheries. However, in 
Indonesia, constraints have limited the transmission of 
catch information from vessels to authorities. Low 
educational background and heavy reluctance from the 
skippers on sharing fisheries information has led to low 
acceptance of obligatory logbook submission in longline 
vessels (Geehan, 2018). Concern regarding data sharing 
(i.e., fishing ground) was likely the primary source 

behind the refusal. Moreover, the skipper knowledge 
about common names or standard codes of fishes 
remains questionable, especially for by-catch species, 
leading to misidentification on some species with similar 
physiology (e.g., marlins). 

On the other hand, scientific observer data 
provides more detailed information and a high level of 
confidence in the data since it is obtained from well-
trained personal. However, it is inherently expensive, 
and invariably the quantity or coverage of data is much 
less than what is expected from logbook data, but the 
quality is generally much better. Therefore, It has been 

 
Figure 4. Standardized catch per unit effort (CPUE) of blue marlin caught in the Indonesian tuna longline fleet for 2006-2018, 
calculated using various models. The values were normalized by dividing by their means for comparison purposes. 
 

 
Figure 5. Final standardized catch per unit effort (CPUE) of blue marlin caught in the Indonesian tuna longline fleet for 2006 – 
2018, calculated using a delta-gamma model with 95% confidence interval (greyed area). The values were normalized by dividing 
by their means for comparison purposes. 

 
 
 

Table 5. Summary of indicators as calculated using four model structures: Tweedie (TWEEDIE), Negative Binomial (NB), Zero-inflated 
with Negative Binomial (ZINB), Delta-lognormal (DELTA). The terms in the column at left indicate Akaike (AIC), Bayesian Information 
Criteria (BIC), and R2 

Indicators TW NB ZINB 
DELTA 

Gamma Delta 

AIC 1962.38 1513.51 1529.42 200.73 1283.10 
BIC 1922.38 1620.71 1722.38 269.58 1384.95 
R2 0.14 0.14 0.01 0.21 0.04 
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extensively used to decrypt the catch and effort data 
from longline fisheries (Block et al., 2005; Huang & Liu, 
2010; Teo & Block, 2010), especially for by-catch species 
which are usually not fully covered by logbook data. 
According to the IOTC, the minimum mandatory 
observer coverage for longline fleets is 5% of the total 
fishing effort (i.e., the total number of hooks) and does 
not require stratification by area, vessel or season. 
Therefore, each country's responsibility is to ensure that 
the data collected from national observer programs are 
sufficiently stratified to provide meaningful information. 
In this case, due to a strict budgeting policy, the level of 
Indonesian scientific observer coverage was less than 
2% every year (Fahmi et al., 2020).   

This study shows that, apart from the spatial 
limitation, the model performed well in characterizing 
the relative abundance of blue marlin. There was no 
apparent trend in catch rates, suggesting that the 
northeastern Indian Ocean blue marlin population has 
remained relatively stable for the period 2006-2018. 
However, this is a relatively short time series and the 
observed stability in the CPUE trend does not indicate a 
healthy population. More extended CPUE time series, 
such as those derived from the Japanese and Taiwanese 
longline fleets operating in the Indian Ocean, show an 
extended period of decline from 1979 until 2010 and 
then stabilizes (Taki et al., 2019; Wang, 2019). The most 
recent assessment of blue marlin in the Indian Ocean 
indicates that the stock is overfished and subject to 
overfishing. The catches of blue marlin would have to be 
reduced by approximately 35% (approx. 7,800 tons) to 
ensure sustainability (Parker et al., 2019). As mentioned 
earlier, the Indonesian CPUE information from this study 
was included in the stock and corroborated the recent 
stability observed in the Japanese and Taiwanese CPUE 
indices. 

Further, the variation in abundance of blue marlin 
could also be driven by some oceanographic and socio-
cultural phenomenon. A couple of studies found that 
the conditions of primary productivity strongly influence 
fish habitat in the southern part of Indonesian waters. 
Where it's strongly influenced by the sea-air interaction, 
significantly influenced by monsoon (Utamy et al., 
2015), and the interannual ENSO and IOD (Ningsih et al., 
2013; Susanto & Marra, 2005). For example, during 
2006-2018, there were several coupling events between 
ENSO and IOD. Some of those events correlated with 
semi-permanent upwelling (June - October), which 
might influence the catch rate of billfish. However, such 
an assumption wasn't incorporated in this study. Hence 
an in-depth investigation is required for future research. 
In addition, the low catch rate of tuna and billfish in the 
southern waters of Java might be related to inadequate 
primary productivity Yu et al. (2015). Also, socio-cultural 
influence wherein particular month of the year, during 
the religious events the fishing activities were usually 
put on hold (Setyadji, Pranowo, et al., 2018). 

The two-stage delta-GLM approach has been 
frequently used for modelling the relative abundance of 

billfish species from longline fisheries (Walsh & 
Brodziak, 2014; Wang, 2019). It is recommended in 
cases where excessive zero catch occurrences are 
observed (Campbell et al., 2017). The first stage of the 
model incorporates the pattern of the event of positive 
catches, while the second phase models the mean size 
of the positive catch rates. Zero-inflated models are also 
expressed in two parts. Although conceptually may be 
more appropriate for modelling catch data of 
infrequently encountered species (Minami et al., 2007), 
the delta-Gamma model was considered more 
appropriate in this study than the zero-inflated and 
other traditional model structure (e.g., Tweedie, 
negative binomial). Apart from its ability to account for 
the high proportion of zero catches, the delta-Gamma 
was also better in handling the high nominal CPUE in 
2012 and gave stability to the overall series without 
signs of overfitting, as shown in Walsh and Brodziak 
(2015). However, a higher level of uncertainty 
progressed towards the end of the data series, which 
remains a lingering issue. It is likely to result from low 
coverage of the dataset instead of the inconsistent 
catches. Low data coverage is a typical restraint for 
scientific observer data. It would take a substantial cost 
(approx. $1,000,000/year) to comply with the minimum 
requirement (i.e., 5% coverage) from regional fisheries 
regulation. Improving the submission and quality of 
logbook data should be the main priority for Indonesian 
authorities while maintaining the continuity of the 
scientific observer program. Improving deployment 
stratification by common fishing ground, fleet and time 
of the year (e.g., quarterly) would result in a more 
representative dataset being obtained.  
 

Conclusions  
 

Overall, the Delta-gamma performs better when 
modelling data with a high proportion of zeros than 
other traditional models. The blue marlin CPUE trend is 
relatively stable over time, despite the inter-annual 
fluctuations, which are likely a result of natural variation 
in the population as opposed to operational changes or 
inter-annual environmental variation. The final model 
still possesses a high level of uncertainty and, therefore, 
can be further improved. Future research should focus 
on incorporating large-scale ecological data or habitat 
suitability information.  
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