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Abstract 
 

Black marlin (Istiompax indica) is a bycatch species in the Indonesian tuna longline 
fishery operating in the eastern Indian Ocean. Approximately 18% (~2,500 tons) of black 
marlin caught in the Indian Ocean are landed in Indonesia. However, its population status in 
the Eastern Indian Ocean is still little known. In this present study, a Generalized Linear 
Model (GLM) was used to standardize the catch per unit effort (CPUE) and to estimate 
relative abundance indices based on the Indonesian longline dataset. Data was collected by 
scientific observers from August 2005 to December 2014. Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC) were used to select the best models among all 
those evaluated. If using the AIC, negative binomial (NB) and zero-inflated negative binomial 
(ZINB) models were selected, but if using BIC, the NB model was the best option. Time 
trends of standardized CPUE, as calculated using NB and ZINB models, were similar from 
2008 onward. However, the trends were conflictive in the early stages of the series (2005-
2007). A principal outcome is that there was no strong motivation to choose one of the two 
models, NB or ZINB), over the other. Sensitivity analyses are recommended as the 
alternative when running stock assessment models using such time series. 

Introduction 
 
Black marlin (Istiompax indica, hereafter BLM) are 

an apex predator, a highly migratory species, which 
reach high commercial values in the tropical and 
subtropical Indian and Pacific Oceans (Nakamura, 1985). 
In the Indian Ocean, it has been caught between 20

o 
N 

and 45
o 

S, with highest catches off western coast of India 
and in area off Beira and Barazuto Archipelago in the 
Mozambique Channel (Benkenstein, 2013; Indian Ocean 
Tuna Commission [IOTC], 2015). In recent years, most of 
BLM were caught by gillnet fleets (59%), followed by 
longlines fleets (19%), while the remaining catches were 
recorded under troll and hand lines (IOTC, 2015). 
Indonesian fleet caught approximately 18% (~2,500 tons 
yearly) of total BLM in the Indian Ocean in the recent 
years, which ranked fourth after Iran, Sri Lanka and India 
(IOTC, 2015). In spite of the relatively high catches, BLM 
is considered as a bycatch of the commercial Indonesian 
tuna longline fishery (Setyadji, Jumariadi, & Nugraha, 
2012).  

By-catch is an important management issue in the 
tuna longline fishery. It is a growing concern for most 
Regional Fisheries Management Organizations (RFMOs) 
regarding of its impact (King & McFarlane, 2003). Most 
of the bycatch in the tuna fisheries, especially billfishes 
have barely been studied, partly due to the limited data 
concerning catch, biology and population dynamics. The 
first attempt on stock assessment of BLM in Indian 
Ocean was analyzed using Stock Reduction Analysis 
(SRA), which indicated that the stock was not overfished 
but has been subject to overfishing (IOTC, 2015). But, 
conflictive result appeared when more robust 
assessment used (conventional and Bayesian production 
models). It was stated that the stock was subject to 
overfishing in the recent years, and currently overfished 
(Andrade, 2016). Hence there was a large uncertainty 
about the reliability of available estimations of catches 
and of relative abundance indices. 

Estimations of relative abundance indices (e.g. 
standardized CPUE) convey important information 
concerning the status of fisheries stocks. Furthermore, 
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those indices are necessary to run simple models and 
they are also used as auxiliary data in more detailed 
stock assessment models (Rodriguez-Marin, 2003; 
Maunder & Punt, 2004). The first who attempted to 
estimate standardized CPUE for BLM was Uozumi (1998) 
based on Japanese longline fishery statistics for 1967-
1997 time span. However, lack of detailed data has 
hampered the calculation of standardized CPUE in the 
recent decades caught by other fleets or in areas where 
Japanese longline fleet have not operated in (e.g. 
eastern Indian Ocean). Therefore, this paper provides 
new information on relative abundance trend of BLM in 
the east of Indian Ocean based Indonesian tuna longline 
fleets. We believe the results are valuable in term of fill 
the research gap and contribute as an auxiliary 
information to assess the status of BLM in the Indian 
Ocean. 

 

Materials and Methods 
 
Data and Variables 
 

In this paper, we have analyzed the data gathered 
by the scientific observers onboard Indonesian 
commercial tuna longline vessels, which are mainly 
based in Benoa Fishing Port, Bali. The observer program 
started in 2005 as an Indonesia-Australia collaboration 
(Project FIS/2002/074 of Australian Centre for 
International Agricultural Research), and since 2010 it 
has been conducted by the Research Institute for Tuna 
Fisheries (Indonesia). Database contained information 
about 92 fishing trips and 2,287 longline fishing sets 
from August 2005 to December 2014. Longline fishing 
trips last for three weeks to three months. Main fishing 
grounds cover from west to southern part of Indonesian 

waters, stretched from 75 E to 35 S (Figure 1). It also 
informed concerning the number of fish caught by 
species, total number of hooks, number of hooks 
between floats (HBF), start time of the set, start time of 
haul, soak time, and geographic position where the 
longlines were deployed into the water. The response 
variable in the models was the catch of black marlin in 
number of fish. Year and quarter were used as 
categorical (factor) explanatory variables. Additional 
information was used as explanatory variables as 
follows: 

 
a. Fishing area (AreaTree) 

 
Area stratification method was applied using GLM-

tree approach proposed by Ichinokawa and Brodziak 
(2010); 

 
b. Number of hooks between floats (HBF) 
 

Number of hooks between floats was set as a 
categorical variable in the model. It was assigned as 1 if 
HBF <10 hooks (surface longline), and 2 if HBF >10 hooks 

(deep longline) following Sadiyah, Dowling, and 
Prisantoso (2012);   

 
c. Start time of the set 
 

Start time of the set was treated as quantitative 
variable, the values were rounded to the nearest 
integer; 

 
d. Soak time  
 

Soak time was calculated as the time elapsed 
between the start of the fishing setting and the start of 
hauling of the longline. Soak time in the model was 
treated as continuous variable, thus the values were 
rounded to the nearest integer; 

 
e. Moon phase  
 

Moon phase (29.5 days) were categorized into two 
periods, as light and dark, and assumed the demilunes 
(first/last quarters), waxing and waning gibbous and full 
moon as light period, while new moon, waxing and 
waning crescent considered as dark period (Akyol, 
2013). 

 
Models 
 

Six Generalized Linear Model (GLM) models were 
considered in this present study. Whereas nominal catch 
(number of fish) acted as response variable while effort 
(total hooks) was included in the models as an offset 
caught. These models are Poisson and negative binomial 
(NB), which we refer to as the standard models, zero-
inflated Poisson (ZIP), zero-inflated NB (ZINB), Poisson 
hurdle (PH), and NB hurdle (NBH) models. The summary 
of probability function of all models is derived from 
Rose, Martin, Wannemuehler, and Plikaytis (2006), 
Saffari, Adnan, and Greene (2012), and Walsh and 
Brodziak (2014) which is provided in Table 1. 

Black marlin is a bycatch species in the longline 
fisheries and the datasets contained a high proportion of 
zero catches (~89.4%). Hence Poisson distribution may 
not be suitable to model catch data, while negative 
binomial model can account for large number of zeros 
and over-dispersion since a dispersion parameter is 
estimated. However, if the number of zeros is excessive, 
even the negative binomial distribution may not be 
suitable to model the catch data. Zero-inflated and 
hurdle models are alternatives to cope with the large 
number of zero catches. If the zero-inflation models 
separate the zeros into “true” and “extra” categories, 
hurdle models model the zeros and non-zeros as two 
separate processes. Details on conventional GLMs and 
on zero-inflated and hurdle models can be found in 
Mullahy (1986), McCullagh and Nelder (1989), Lambert 
(1992), Colin and Trivedi (1998) and Dobson and Barnett 
(2008).  
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We have used a forward approach to select the 
explanatory variables and the order they were included 
in the full model. The first step was to fit simple models 
with one variable at a time. The variable included in the 
model with lowest residual deviance was selected first. 
As second step the model with the selected variable 
then received other variables one at a time, and the 
model with lowest residual deviance was again selected. 
This procedure continued until residual deviance did not 
decrease as new variables were added to the previous 
selected model. Finally, all main effects were considered 

and a backward procedure based on Akaike Information 
Criterion (AIC) (Akaike, 1974) and Bayesian Information 
Criterion (BIC) (Schwarz, 1978) were used to select the 
final models. We also rely in AIC and BIC to compare 
these models. Interaction was not included in the model 
to avoid overfitting. 

The qualities of the fittings were assessed by 
comparing the observed frequency distributions of the 
number of fish caught to the predicted frequency 
distribution, as calculated using the selected models. 
Kolmogorov-Smirnov test was used to assess if the 

 

Figure 1. Distribution of Indonesian tuna longline sets from 2005-2014. Black dots represent positive sets, and grey dots 
represent zero-catch per set. 
 
 
 
Table 1. Probability models and hypotheses about the capture probability of catch (C) for CPUE standardization, including the 
probability mass or density function for catch, and the hypothesis about nominal catches, for the Poisson, negative binomial, zero-
inflated Poisson, zero-inflated negative binomial, and delta-gamma distributions, where π is the probability of an extra zero catch 

per set, p is the probability of a positive catch per set, µ, k and  are parameters. 

 
Probability model Probability function Hypothesis 

Poisson  Nominal catches are neither over 
dispersed or under dispersed 

Negative Binomial  

 

Nominal catches are over 
dispersed 

Zero-inflated 
Poisson  

Nominal catches are over 
dispersed with excess of zeros 

Zero-inflated 
Negative Binomial 

 

Nominal catches are over 
dispersed with excess of zeros 

Hurdle Poisson  
 

Nominal catches are over 
dispersed with excess of zeros 

Hurdle Negative 
Binomial  

Nominal catches are over 
dispersed with excess of zeros 
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difference of the two distributions (observed and 
predicted) were significant. Pearson residual was 
calculated for the selected models as model validation. 
Maps were produced using QGIS version 2.12 (QGIS 
Developer Team, 2009) and the statistical analyses were 
carried out using R software (R Core Team, 2016), 
particularly the package pscl (Zeileis, Kleiber & Jackman, 
2008) and lsmeans (Lenth, 2016) to calculate the 
standardized CPUE value. 

 

Results 
 
Descriptive Catch Statistics 
 

Research Institute for Tuna Fisheries (RITF) 
observers recorded catch and operational data at sea 
during 92 trips with 2,287 sets from commercial longline 
vessels that deployed over 3 million hooks in 2005–2014 
(Table 2).  

The definition of area separation based on GLM-
tree was presented in Figure 2. It was divided into four 
areas which constructed by 5x5 degree blocks, each area 
was assigned with different tone of color. The nominal 
time series and proportion of zero catch per set of the 
BLM CPUE is presented in Figure 3. In general, the series 
was highly variable, with peaks in 2012, and lower 
values in the remaining years. The percentage of fishing 
sets with zero catches of BLM in the fishery was high, 
with average 89.4% of the fishing sets, varying annually 
between a minimum of 81.9% in 2011 and a maximum 
of 93.8% in 2008.  

 
CPUE standardizations  
 

The number of parameters (k), AIC, BIC, logarithm 
of the likelihood (logLik), number of predicted zero 
catches, and p values of Kolmogorov-Smirnov test as 
calculated using six model structures (P, NB, ZIP, ZINB, 

Table 2.  Summary of observed fishing effort from Indonesian tuna longline fishery during 2005–2014. Results are pooled and also 
presented by year of observation. Operational parameters are means (upper entries) and standard deviations (lower parenthetical 
entries) 
 

Year Trips Sets Total hooks Hooks per set Hooks per float Mean start set Mean soak time 

2005 9 108 157,065 1,454.3 (151.8) 18.6 (1.5) 8.2 (1.8) 8.5 (0.7) 
2006 13 401 577,243 1,439.5 (214.9) 11.2 (3.9) 7.4 (3.2) 11.8 (2.0) 
2007 13 265 406,135 1,532.6 (326.5) 14.0 (4.4) 8.4 (2.4) 10.1 (2.0) 
2008 15 370 483,662 1,307.2 (385.9) 13.0 (4.5) 8.5 (2.9) 10.3 (1.8) 
2009 13 283 323,042 1,141.5 (234.7) 12.1 (4.9) 8.8 (4.2) 10.5 (1.4) 
2010 6 165 220,394 1,335.7 (457.5) 13.6 (5.2) 7.9 (2.8) 11.2 (2.2) 
2011 3 105 110,384 1,051.3 (173.9) 12.0 (0.0) 6.8 (0.9) 10.9 (0.6) 
2012 8 198 290,265 1,466.0 (559.1) 14.1 (2.3) 7.7 (3.0) 12.0 (3.0) 
2013 7 225 252,919 1,124.1 (210.4) 12.7 (2.1) 7.3 (2.3) 11.2 (1.6) 
2014 5 167 193,740 1,160.1 (176.9) 15.0 (2.0) 7.6 (2.0) 12.1 (1.2) 

 
 
 

 
Figure 2. Spatial area stratification based on GLM-tree for the BLM CPUE caught by the Indonesian longline fleet in the eastern 
Indian Ocean. 
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HP and HNB are shown in Table 3. Overall the logarithm 
of likelihood of zero-inflated and particularly hurdle 
models were high but they are more complex with large 
number of parameters. The number of zero catches in 
the database was 2044.  

If we relied on AIC, ZINB models was selected as 
the best among the models we have evaluated. 
However, if we rely on BIC, NB is selected as the best 
model. Hence NB and ZINB models were used to 
calculate standardized catch rate indices for BLM as 
there was no evidence they were biased, and because 
they were the models with lower values of AIC or BIC. 
ZINB model was better in term of predicting the zero 
catch compared to previous three models (P, NB and ZIP 
respectively). As hurdle models always give the correct 

prediction of zero catch, because of its structure. 
Deviance analyses of selected NB and ZINB models 

are in Tables 4 and 5, respectively. Start set was 
dropped because AIC and BIC values increase if they are 
included in the models. If we rely in AIC and BIC, five 
categorical and one quantitative explanatory variables 
were included in the NB model, though estimations of 
parameters for the levels of factors were not 
significantly different from zero. ZINB model contained 
the same categorical and quantitative explanatory 
variables as NB, but the number of parameters is larger 
because it includes two sets of estimations, one for the 
binomial and one for the negative binomial part of the 
model.   

Estimations of standardized catch rates are shown 

 
Figure 3. Nominal CPUE series (N/1000 hooks) for BLM between 2005 and 2014. The error bars refer to the standard errors (left 
panel); Proportion of zero catch per set for BLM between 2005 and 2014. The error bars refer to the standard errors (right 
panel). 
 
 
 
Table 3.  Summary of indicators as calculated using six model structures: Poisson (P), Negative Binomial (NB), Zero-inflated with 
Poisson (ZIP), Zero-inflated with Negative Binomial (ZINB), Hurdle with Poisson (HP), and Hurdle with Negative Binomial (HNB). The 
terms in the column at left indicate: number of parameters (k), Akaike (AIC) and Bayesian (BIC) Information Criteria, logarithm of 
the likelihood (logLik), number of predicted zero catches (zero), and p values as calculated using a Kolmogorov-Smirnov test. 

 
 Model structure 

 P NB ZIP ZINB HP HNB 

K 20 19 38 38 40 38 
AIC 1899 1815 1821 1810 1831 1830 
BIC 2014 1930 2038 2028 2060 2048 
logLik -929 -888 -872 -866 -875 -876 
Zero 2008 2025 2041 2045 2044 2044 
p value ~1 1 1 1 1 1 

 
 

 
Table 4.   Deviance table for NB Model. 

 
Df Deviance Resid. Df. Resid. Deviance Pr(>Chi) 

 NULL 
  

2286 1083.35 
  AreaTree 3 152.774 2283 930.58 0.000 *** 

Year 9 20.143 2274 910.43 0.017 * 
Quarter 3 15.849 2271 894.59 0.001 ** 
Soak_Time 1 14.733 2270 879.85 0.000 *** 
HBF2 1 6.61 2269 873.24 0.010 * 
Moon3 1 3.84 2268 869.4 0.050 . 
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in Figure 4. Time trends of standardized CPUE, as 
calculated using NB and ZINB models, were similar from 
2008 onwards. However, estimations of early stages of 
the time series were conflictive (2005-2007). 
Standardized catch rate calculated using the NB model 
increased from 2005 to 2008, but decreased during the 
same period if we rely on ZINB model. As there is no 
strong reason to select one of these two standardized 
time series for stock assessment purposes, a sensitivity 
analysis is an alternative.  

On overall, nominal CPUE and scaled standardized 
CPUE from NB model showed similar time trends, except 
in the beginning and in the end of the series (Figure 5a). 
In addition, the scaled standardized CPUE series was 
smoother than the nominal CPUE. Although the Pearson 
residual tends to be larger when predicted values are 
lower (Figure 5b), the variation of the Pearson residual 
per each variable was relatively small, except for hooks 
between float and moon phase (Figure 5d & 5g). 
Therefore, this model is considered relatively well 
estimated. As for scaled standardized CPUE from ZINB 
model showed a strong incline trend over the years, it 
relatively similar compared to the scaled nominal CPUE, 
except for the end of the series. It also created a 
smoother trend compared to NB model. Even though, 
the Pearson residual tends to be larger when predicted 
values are lower (Figure 6b), the variation of the 
Pearson residual per each variable was relatively small, 
except for hooks between float (Figure 6d). Therefore, 
this model is considered well estimated. 

 

Discussions 
 
Model with negative binomial distribution is likely 

provide better fit for datasets with a lot of zero-valued 
observations, such as presented in this study. In 
particular, NB and ZINB model was outperformed P, ZIP, 
HP and HNB in term of trading off between the bias and 
the variance. NB model was chosen since BIC tend to 
choose a simpler model (Prado & West, 2010), than, as 
for AIC was the opposite, therefore, ZINB model was 
chosen. However, we found lots of problem when fitting 
the models because the lack of balance in the crossing 
levels of factors. It also became the main issue when the 
chosen models could only explain about 20% of the 
variables. Perhaps, conducting more sophisticated 
model like adding random effect, such as: vessel or 5x5 
grid area using General Linear Mixed Model (GLMM) 
(Ijima, 2017), delta-lognormal GLM (Wang, 2017) or 
zero-inflated negative binomial regression model with 
smoothing (Minami, Lennert-Cody, Gao & Román-
Verdesoto, 2007) could be beneficial for more robust 
result. The inclusion of environmental variables in the 
models such as sea surface temperature (SST), sea 
surface height (SSH), surface winds, and sea surface 
chlorophyll also important in order to explain more 
about the catch of BLM in eastern Indian Ocean 
(Setiawati, Sambah, Miura, Tanaka & As-Syakur, 2014; 
Lumban-Gaol et al., 2015). 

Since the dataset were gathered from scientific 
observers, a lot of data could be incorporated into the 
model, but not all of them were fit into the model. Area 

Table 5. Deviance table for ZINB Model. 

 
Df AIC BIC Deviance Chisq Prob 

 NULL 
 

1946.046 1957.516 1940.046 109.961 0.000 *** 
Moon3 1 1945.589 1968.529 1935.589 4.457 0.108 . 
Soak_Time 1 1935.571 1958.511 1925.571 14.475 0.001 *** 
HBF2 1 1927.897 1950.837 1917.897 22.149 0.000 *** 
Quarter 3 1924.722 1970.602 1906.722 33.324 0.000 *** 
Year 9 1924.171 2038.871 1882.171 57.875 0.000 *** 
AreaTree 3 1848.085 1893.965 1830.085 109.961 0.000 *** 

 
 
 

 
Figure 4. Standardized catch per unit effort (CPUE) of BLM calculated using Negative Binomial (NB) and Zero-inflated Negative 
Binomial (ZINB) models. Values were scaled by dividing them by their means. Remark: black dots represent nominal CPUE. 
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a)                                                                                                               b ) 

  
c )                                                                                                                   d) 

   
e )                                                                                                                   f) 

 
g )                                                                                                                   h) 

 
 Figure 5. Standardized CPUE of eastern Indian Ocean BLM by Indonesian tuna longline fishery (2005-2014) from NB model. a) 
The comparison between nominal and standardized CPUE (lines denote standardized CPUE, Points denote nominal CPUE and 
filled areas denote 95% confidence interval of standardized CPUE); (b-g) The plots of the Pearson residual trend for each 
variable. 
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a)                                                                                                                  b ) 

 

c )                                                                                                                   d) 

 

e )                                                                                                                   f) 

 

e )                                                                                                                   f) 

 

Figure 6. Standardized CPUE of eastern Indian Ocean BLM by Indonesian tuna longline fishery (2005-2014) from ZINB model. a) 
The comparison between nominal and standardized CPUE (lines denote standardized CPUE, Points denote nominal CPUE and 
filled areas denote 95% confidence interval of standardized CPUE); (b-g) The plots of the Pearson residual trend for each 
variable. 
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Tree variable was likely the most influential factor 
defining the catch of BLM. It is understood that most of 
BLM caught in the area 2, near the border between 
Indonesia and Australia. Those area are also known as 
the spawning ground of bluefin tuna (Thunnus maccoyii) 
(Farley, Eveson, Davis, Andamari, & Proctor, 2014). The 
HBF variable also essential in term of describing the 
target fishery as suggested previously in other studies 
on billfish (Sadiyah et al., 2012; Ijima, Ochi, Nishida & 
Okamoto, 2015). Models with HBF as a factor did not 
outperform the model with HBF as a covariate, and 
therefore simple linear models represent the 
relationship between HBF and CPUE of BLM. In some 
CPUE standardization study conducted by several 
authors (e.g. Chen, Song, Li, Xu & Li, 2012; Unwin et al., 
2005), Start_Set of set and Soak_Time were considered 
as important covariates. In this study, however, 
Start_Set was dropped for all models with negative 
binomial distribution (i.e. P, ZIP and HP). Start_Set and 
Soak_Time were relatively similar in most of the fishing 
sets (~80% of setting was commenced at day with 
soaking time mostly done less than 15 hours), hence 
there is no contrast. Therefore, the results suggesting 
that these variables are not important to explain the 
variability of CPUE of BLM might be carefully considered. 

Currently there is no consensus about the 
re ationship  et een moon phase and C    o  species 
cau ht  y tuna pe a ic  on  ine, and it is  i e y to  e 
species dependent   n this study, the re ationship 
 et een     catches and moon phase  as  ea  
        ,  hich is in a reement  ith  once-  az, 
 rte a-Garc a and  ernández- áz uez         ho 
reported no significant differences in catches of striped 
marlin across the four moon phases. On the other hand, 
Poisson, Gaertner, Taquet, Durbec and Bigelow (2010) 
found the yields of the albacore tuna (Thunnus alalunga) 
and swordfish (Xiphias gladius  cau ht  y the R union 
Island longline fleets targeting swordfish were 
significantly influenced by the phases of the moon. 
Jatmiko, Setyadji and Ekawati (2016) also found that 
moon phase had significant effect on the CPUE of bigeye 
tuna (Thunnus obesus), in particular during full moon. 
The effect of moon phase in CPUE and catches depends 
on species behavior, including nocturnal movements, 
and on the time of the day the longlines are set. The 
Indonesian tuna longlines were most often set during 
early morning (daylight) and hauled during late 
afternoon or early evening. The effect of moon phase 
may be stronger when longlines remain into the water 
during the night. 

 Overall, both standardized CPUE series showed a 
slight increasing trend across the ten-year period for 
which data was available. If we assume these 
calculations are valid indicators, there is no clear 
evidence that abundance of the stock of black marlin in 
the eastern Indian Ocean has decreased in the recent 
years. If we rely in the estimations calculated using the 
simplest NB model, the standardized CPUE of black 

marlin showed a slight increasing trend during recent 
years, similarly to CPUE time trend of blue marlin as 
calculated by Wang, Lin and Nishida (2012). On the 
other hand, standardized CPUEs of striped marlin (T. 
audax) (Wang, 2015; Ijima et al. 2015), Indo-Pacific 
Sailfish (Istiophorus platypterus) (Andrade, 2015) and 
swordfish (X. gladius) (Nishida & Wang, 2014) are 
decreased over recent years. Therefore, populations of 
billfish species in the Indian Ocean are probably 
experiencing very different fishery mortalities, in spite 
some of the species are caught by the same fleets. This 
remain as a remind that specific regulations are 
necessary to manage billfish stocks. 
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