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Abstract 
 
Scientific and technological progresses have introduced diverse data sources for 
seawater temperature over broad temporal and spatial ranges. Here, we investigated 
the performance of satellite and model-based seawater temperature data for different 
temporal composites and depths. We applied an in-situ temperature time-series 
obtained in a coastal bottom in the Aegean Sea over three years, as the reference. 
Both datasets showed largely significant relationships based on cross-correlation 
analyses and presented descriptive properties of the in-situ conditions at 
corresponding depths. Based on the results of analyses, the modeling datasets 
presented more reliable results and representations of in-situ conditions than the 
datasets obtained from satellite for the coastal region. However, the datasets obtained 
from the satellite also provided reliable data for all time frames investigated, 
particularly in the mixed surface layer. Monthly datasets were more effective in 
providing descriptive values in long term studies. This is the first detailed study to 
explore the descriptive capacities of modeling for water temperature in coastal 
environments. According to the results, the selection of a dataset as a proxy for 
seawater temperature requires careful consideration. The present study provides an 
extensive baseline for evaluating the suitability of the application of specific datasets 
as proxies in coastal ecosystems.  

 

Introduction 
 

Technological and research progress has provided 
regular datasets on various variables in marine sciences. 
For instance, as a source of time-series datasets, 
satellite oceanography has provided a tool for the 
continuous monitoring of ocean globally since the 
1970s. Therefore, it has become the major tool that has 
facilitated the development of operational 
oceanography and its applications (Le Traon, 2018). 

Ocean modeling has also recorded similar progress and 
it has become a vital aspect of operational 
oceanography over the last 60 years (Le Sommer et al., 
2018). Kim et al. (2013) demonstrated that the 
integration of both data sources could enhance the 
quality and reliability of the last products. 

Although satellite and ocean modeling datasets 
provide reliable time-series data (e.g. Clementi et al., 
2019; Acker & Leptoukh, 2007), particularly in offshore 
regions. Current development such European Union 
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Copernicus Marine Environment Monitoring Service 
(CMEMS) reveals products and services for marine 
studies and applications easily accessible continuous 
data sets in specific regional domains and temporal 
coverage in higher resolution. However, there are 
potential limitations in coastal regions with regard to 
both types of data sources because of some technical 
challenges. Coastal regions are more sensitive to 
retrieve estimations in reasonable uncertainty 
compared to pelagic zones in offshore as they are 
relatively shallow. Therefore, the entire water column is 
affected by interactions among ocean, atmosphere and 
land. In addition, seawater in coastal regions has more 
complex dynamics optical properties due to factors that 
include the influence of terrestrial inputs such as river 
outflow, spring freshwater outputs and their 
contaminants. Therefore, such factors could influence 
overall performance of remote sensing or modeling 
products in near-coastal areas (Fox-Kemper et al., 2019) 
and led the unreliability (Baklanov et al., 2011) and, 
resulted more limited application of remote sensing or 
modeling techniques in monitoring coastal 
environments.  

Fox-Kemper et al. (2019) have explored novel 
algorithms, approaches, challenges, and recent progress 
in ocean modeling, while Lira & Taborda (2014) 
reviewed improvements in the resolutions of satellite 
sensors, which revealed remarkable progress in their 
potential application in coastal regions. Such progress 
has made model and algorithm-based approaches 
available for use in the monitoring of highly dynamic 
coastal environments, and their application in coastal 
areas has increased over the last few decades (e.g. 
Klemas, 2011; Bengil & Mavruk, 2018, 2019). Though 
impact of climate change has initiated some attempt to 
evaluate in order to use satellite derived products for 
coastal Mediterranean Sea (eg, Von Schuckmann et al., 
2019), There is no specific evaluation for products of 
physical modelling in this manner to the best of our 
knowledge. 

Anthropogenic activities mainly influence the 
coastal regions of oceans, considering the rich 
biodiversity and ecological resources found in the 
regions (Bengil & Bizsel, 2014). In addition, physical or 
biogeochemical changes in marine ecosystems linked to 
climate change are the sources of various stress factors 
in the ecosystems (Snelgrove et al., 2014). Seawater 
temperature can be used to evaluate the potential 
impacts of climate change (GCOS, 2017) on biotic and 
abiotic components, for example, via mixing and 
transportation dynamics (Hordoir & Meier, 2012), 
match-mismatch mechanisms among different trophic 
levels (Doney et al., 2012; Durant et al., 2019), structure 
and composition of local communities (Mavruk et al., 
2017), and habitat loss (Mantyka-pringle et al., 2012). 

Monitoring seawater temperature is also critical 
because the products of ocean modeling activities and 
satellite technologies contain the variable for broad 
temporal and spatial ranges, which offers an 

opportunity for the evaluation of the states of sensitive 
coastal regions under various spatio-temporal ranges at 
relatively inexpensive costs.  

Gökova Bay is located in the transition zone 
between the South Aegean Sea and the Levantine Sea. 
The bay is considered a global biodiversity hotspot in the 
Mediterranean Basin and in the World Wildlife Fund 
Global 200 ecoregions (Olson & Dinerstein, 2002). It is 
the largest Marine Protected Area (MPA) in Turkey (Unal 
& Kizilkaya, 2019). In addition to fish biomass and 
diversity monitoring activities, there are ongoing 
activities such as active restorations of macroalgae, 
seagrass habitat, and marine mammal monitoring, as 
well as abiotic (temperature) components of the 
ecosystem in the Bay.  

The purpose of the present study is to evaluate the 
capacity of products of ocean modeling and satellite 
technology to accurately represent coastal seawater 
temperature data by comparing data obtained from the 
tools with in-situ reference datasets from a coastal 
benthic region. We first compared the raw datasets to 
investigate their utility for descriptive purposes. 
Afterward, parametrization steps were applied to 
explore potential calibrations for globally available 
datasets in the coastal waters of Gökova Bay. In 
addition, uncertainty properties were also evaluated to 
understand the capacities of the datasets as proxies 
from the time frames evaluated in the present study. 

 

Material and Methods 
 

Datasets 
 

The study was conducted in the coastal waters of 
Gökova Bay, south-eastern Aegean Sea (Figure 1). HOBO 
Pendant water temperature data loggers (Onset 
Computer Corporation, MA, USA) were deployed just 
above the sea bottom at five-meter intervals from a 
depth of five to 40 meters. The loggers were set to 
collect temperature data at hourly intervals from 
01/01/2016 to 24/10/2019. The data were extracted 
using HOBOware (Onset Computer Corporation, MA, 
USA) data acquisition software. Daily, weekly (8 days), 
and monthly averages were calculated from the 
extracted data. The obtained datasets were then used 
to compare various time series data-sets from numerical 
physical models and satellite images.  

Datasets from modeling and satellite technologies 
used in the present study were obtained from global 
data services. With regard to the modeling dataset, 
temperature products, which were composed of 24-
hour mean fields and monthly mean fields, from the 
Mediterranean Sea Physical Forecasting system 
(MEDSEA_ANALYSIS_FORECAST_PHY_006_013) that 
was generated by Clementi et al. (2019) under European 
Union Copernicus Marine Environment Monitoring 
Service (CMEMS) framework. Product were chosen 
since it is developed for the Mediterranean Sea with 
reasonable good spatial resolution (ca. 4km), which is 
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required to demonstrate some certain coastal 
structures. The data were extracted to match in-situ 
datasets in daily, weekly, and monthly time frames from 
01/01/2017 to 24/10/2019. Since they were not 
available in the model fields, weekly products were 
generated using daily products of the model dataset by 
calculating average values for relevant time frames. 
Subsequently, linear interpolation was used to generate 
modeling data at exact depths, where loggers were 
deployed, since the model has outputs for 141 fixed 
vertical depth layers. The datasets obtained from 
models were compared with in-situ datasets at relevant 
time frames and periods based on the geographical 
locations of the stations and depths. Detailed 
information on the datasets can be obtained in the 
product user manual for the Mediterranean Sea Physical 
and Forecasting Product (CMEMS-MED, 2018).  

Datasets retrieved from satellite images are 
available only for the sea surface. Therefore, the 
datasets for the surface were matched with in-situ 
datasets at each depth. However, data for some days 
were missing due to the atmospheric conditions at the 
time of passing the satellite sensors overhead. To 
minimize dataset losses, level three multi sensor 
product (Orain & Picart 2019; 
SST_EUR_SST_L3S_NRT_OBSERVATIONS_010_009_A) 
of CMEMS was used when comparing the data with the 

in-situ data at daily resolution. Products for weekly and 
monthly sea surface temperature were obtained using 
the Giovanni online data system, which was developed 
and is maintained by the Goddard Earth Sciences Data 
and Information Services Center (GES DISC) of NASA (see 
Acker & Leptoukh, 2007), at 11 m Moderate Resolution 
Imaging Spectroradiometer on board the aqua satellite. 
Data from all products were extracted and matched with 
in-situ data from 01/01/2016 to 24/10/2019.  

 
Statistical Analysis 
 

To analyze the descriptive performance of the 
model and satellite-based datasets, Welch’s two 
independent samples t-test and Levene’s test for 
homogeneity of variance were performed for the 
differences between the overall mean and variance 
values of temperature obtained in-situ and calculated 
from the model or satellite-based datasets. The 
different composites of the same dataset were also 
compared using the same approach. To detect the 
performance of the model and satellite-based datasets 
in tracking changes in temperature, cross-correlation 
functions (CCF) between the variable pairs composed of 
the corresponding depths of the in-situ (independent 
variable, xt+l) and the model/satellite-based (dependent 
variable, yt) datasets were calculated up to a 10-time 

Table 1. Descriptive statistics of temperature data sets in time frames (oC) 

Daily 
In-situ 

(01/01/2016-24/10/2019) (N=1392) 
Physical Model 

(01/01/2017-24/10/2019) (N=1027) 
Satellite image 

(01/01/2016-24/10/2019) (N=1075) 

Depth Min Mean SD Max Min Mean SD Max Min Mean SD Max 
Surface         15.80 23.33 4.14 29.41 
5 15.98 21.79 4.02 28.77 16.72 21.85 3.58 28.67     
10 16.00 21.51 3.81 28.48 16.72 21.61 3.41 27.76     
15 15.98 21.22 3.59 27.80 16.72 21.32 3.20 27.31     
20 15.99 20.93 3.40 27.49 16.72 20.90 2.91 26.66     
25 15.96 20.45 3.11 27.11 16.72 20.42 2.58 26.17     
30 15.97 20.00 2.78 26.65 16.73 19.98 2.27 25.09     
35 15.95 19.58 2.43 26.10 16.75 19.65 2.01 24.92     
40 15.94 19.13 2.01 24.76 16.76 19.40 1.80 24.77     
Weekly In-situ (N=175) Physical Model (N=129) Satellite image (N=175) 
Surface         15.22 21.14 4.09 27.71 
5 16.15 21.76 4.02 28.31 16.86 21.83 3.58 28.12     
10 16.23 21.48 3.81 27.87 16.84 21.60 3.41 27.48     
15 16.22 21.20 3.58 27.47 16.83 21.31 3.19 26.93     
20 16.23 20.91 3.36 26.94 16.83 20.89 2.88 26.25     
25 16.20 20.43 3.05 26.50 16.82 20.41 2.54 25.09     
30 16.21 19.99 2.69 26.10 16.82 19.97 2.23 24.89     
35 16.19 19.57 2.34 25.01 16.82 19.65 1.97 24.61     
40 16.17 19.12 1.94 24.08 16.82 19.39 1.76 24.24     
Monthly In-situ (N=45) Physical Model (N=33) Satellite image (N=45) 
Surface         15.57 21.17 4.07 27.50 
5 16.37 21.71 4.02 27.83 16.98 21.75 3.6 27.66     
10 16.37 21.42 3.80 27.39 16.96 21.51 3.41 26.93     
15 16.40 21.14 3.56 26.87 16.96 21.22 3.18 26.49     
20 16.41 20.84 3.33 26.29 16.94 20.79 2.85 25.81     
25 16.36 20.36 3.00 25.61 16.93 20.31 2.48 24.77     
30 16.37 19.93 2.63 24.80 16.93 19.87 2.14 23.94     
35 16.35 19.51 2.27 23.89 16.92 19.55 1.88 23.37     
40 16.32 19.07 1.87 22.82 16.93 19.31 1.68 22.68     
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unit lag distance (l). Before the analysis, the datasets 
were checked for stationarity and temporal 
independence using the Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test (Kwiatkowski et al., 1992; Trapletti & 
Hornik, 2019) and autocorrelation function analysis 
(Zuur et al., 2009), respectively. Both the assumptions 
were not satisfied in nearly all the variable pairs. To 
avoid obtaining spurious correlations and unreliable 
significance values, pre-whitening (AR1) was applied to 
each variable pair after the first differences between the 
variables were calculated (Dean & Dunsmuir, 2016) 
using R library TSA (Chan & Ripley, 2018). All statistical 
analyses were performed using R v3.0.2 (R Core Team, 
2019). 

In the case of significant correlations between two 
datasets, linear regression parameters were calculated 
to suggest a possible calibration approach for the data 
on the coastal waters of Gökova Bay. Uncertainty 
properties of model and satellite datasets were also 
evaluated to understand capability of utilization time 
frames in the present study. 

 

Results 
 

Minimum, mean, standard deviation (SD) and 
maximum of all data sets in each time frame and depth 
were presented in Table 1 in order to provide descriptive 
summary. The performance of the model-based dataset 
in estimating average values of in-situ was good. Based 
on pairwise Welch two-sample t-tests, there was no 
significant difference between mean values calculated 
from the in-situ and the model-based datasets at any 
depth or any time frame. The only exception was at a 
depth of 40 m based on daily datasets, where the model 
overestimated mean value significantly (p<0.01). The 
variances in temperature, when compared with the in-
situ temperature, were significantly higher at all depths 
in the daily and weekly datasets (p<0.05), excluding the 
weekly comparison at 40 m. However, no significant 
differences in variance were observed in the monthly 
datasets (Table S1 in Supplement file).  

Satellite-based datasets performed relatively poor 
in estimating the descriptive characteristics of seawater 

temperature in Gökova Bay, which was particularly 
apparent in the daily datasets where the surface 
datasets of the satellite images showed significantly 
overestimated mean values (p<0.001) when compared 
with in-situ datasets at all depths in the daily time frame. 
The performance of the satellite data increased in 
weekly and monthly composites when compared with 
the daily composites. However, significantly 
overestimated mean values of the satellite dataset were 
observed after a depth of 30 m in the weekly time frame 
(p<0.001) and after a depth of 35 m in the monthly time 
frame (p<0.01). Based on the Levene’s test of 
homogeneity of variance, the variances of temperature 
calculated from the satellite dataset were higher at all 
depths in the daily and the weekly time frames 
(p<0.001), while the variances were significantly higher 
only at depths greater than 25 m in the monthly time 
frame (p<0.001) (Table S2 in Supplement file). 

In in-situ and model-based datasets, the overall 
mean and variance values calculated from daily, weekly, 
and monthly composites were not significantly 
different. However, daily datasets derived from satellite 
images produced significantly higher overall mean 

values (23.330.25; 0.95oC confidence intervals, ci) in 

comparison to the weekly (21.140.61oC) and monthly 

(21.171.19oC) time frames (p<0.001) (Table S3 in 
Supplement file). 

Results from CCFs showed mostly significant 
relationships between the variable pairs composed of 
the corresponding depth layers of the different data 
sources (Table 2). In general, model-based data yielded 
higher CCF values with in-situ data in the daily and 
weekly composites. In the daily composites, the in-situ 
data statistically led model-based data with a one-day 
lag at 5 and 10-m depths, whereas both datasets 
revealed synchrony at deeper layers. Overall, weekly 
composite model-based data provided the highest CCF 
values at all depths without time lags (CCF= 0.65-0.81; 
p<0.001; lag=0). The performance of the satellite-based 
data decreased gradually with an increase in depth; 
where the model always provided better estimates in 
deeper waters. Notably, satellite data statistically led 
the in-situ dataset with one or two-week lags between 

Table 2. Coefficients of CCF for each pair of variables in data sets. 

  Daily Weekly Monthly 

Depth in-situ vs model 
in-situ vs 

satellite+, 
in-situ vs model 

in-situ vs 
satellite+ 

in-situ vs model 
in-situ vs 
satellite+ 

5 m 0.45***(-1) 0.14***(0) 0.77***(0) 0.49***(1) -0.56* (1) 0.56**(1) 
10 m 0.42*** (-1) 0.10**(0) 0.80***(0) 0.34***(1) -0.48* (4) -0.55** (-1) 
15 m 0.43*** (0) 0.11**(0) 0.81***(0) 0.29***(2) 0.68***(0) 0.46**(1) 
20 m 0.51***(0) 0.08*(0) 0.70***(0) 0.35***(1) -0.55*(-7) 0.48**(1) 
25 m 0.57***(0) 0.09**(0) 0.65***(0) 0.21**(0) ns ns 
30 m 0.61***(0) 0.12***(0) 0.65***(0) 0.20**(7) ns ns 
35 m 0.58***(0) 0.08**(0) 0.72***(0) 0.22** (7) ns ns 
40 m 0.55***(0) 0.06*(0) 0.77***(0) 0.28*** (7) ns ns 

+ Data set from satellite images corresponds only surface layer in each comparison; values in parenthesis indicate lag distance which give the 

highest CCF; : lag distance did not analyzed in daily data set of satellite images since missing days were available depending on atmospheric 

conditions; * shows significant at p<0.05; ** shows significant at p<0.01; *** shows significant at p<0.001; ns indicated CCF is  not significant. 

https://www.trjfas.org/uploads/211205_Sup.Docu.pdf
https://www.trjfas.org/uploads/211205_Sup.Docu.pdf
https://www.trjfas.org/uploads/211205_Sup.Docu.pdf
https://www.trjfas.org/uploads/211205_Sup.Docu.pdf
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the 5 and 20-m depths. The CCFs of monthly composites 
mostly yielded non-significant results below 25 m. 
Moreover, apparently unrealistic results were observed 
between the 5 and 20-m depths, such as negative 
correlations and high optimal lag distances (Table 2, 
Figure S1 and S2 in Supplement file). 

High values of coefficients of determination were 
observed in the regression analysis for significant 
relationships determined in the CCF analysis. 
Coefficients of determination were dispersed between 
0.47 (satellite dataset in 40 m) and 0.98 (modeling 
dataset in 5–10 m) for relationships between datasets 

 
Figure 1 The study area. Red circle indicates the station where temperature data loggers were deployed (36.958 N-28.189 E) 
 

 

 

 
Figure 2. Distribution of percentage errors for all comparisons. Grey bars indicate daily comparisons; red bars show weekly 
comparisons; blue bars indicate monthly comparisons. Each depth comparison with satellite data set corresponds to surface data 
set for satellite. 

https://www.trjfas.org/uploads/211205_Sup.Docu.pdf
https://www.trjfas.org/uploads/211205_Sup.Docu.pdf
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within each temporal frame (Table S4 in Supplement 
file). Comparisons of dataset pairs across the time 
frames are presented in Figures S3 and S4 in Supplement 
file. 

The narrowest percentage error (9.04%) was 
observed at 5-m depth in monthly comparisons, while 
the broadest range in error distribution was 35.00% at 
30 m depth in daily comparisons between the in-situ and 
modeling datasets. Monthly modeling datasets had the 
optimal performance in error among all time frames. 
Distributions of percentage error ranged from 16.88% to 
33.89% for comparisons between the in-situ and the 
satellite image datasets. Comparisons also revealed that 
daily datasets had superior performance based on 
percentage error, and the performance increased 
gradually when compared with the monthly datasets 
(Table S5 in Supplement file). Mean value of percentage 
error was also observed to be close to zero for all 
comparisons, and none of them showed overall 
underestimation or overestimation based on all the time 
frames examined. 

 

Discussion 
 

There have been previous successful and 
unsuccessful attempts to exploit globally available 
datasets for coastal systems throughout the marine 
regions globally. Smale & Wernberg (2009) tested 
satellite image-based datasets in an attempt to apply 
them as proxy of sea water temperature for ecological 
studies on coastal benthic fauna and found an overall 
ability to detect large scale patterns of ecological 
importance. They also explored their limitations. Thakur 
et al. (2018) provided an extensive comparison for sea 
surface temperature and salinity based on in-situ and 
satellite datasets to determine the most appropriate 
satellite products that could be applied in aquaculture 
systems. In addition, Stobart et al. (2015) made an 
extensive comparison throughout the coastal region of 
Australia. Although they observed satellite datasets to 
be potentially valid proxies for in-situ datasets for 
benthic habitats with acceptable uncertainty limits, they 
pointed out some major factors to consider when using 
satellite image-based data as proxy for some specific 
purposes such ecological modeling. Satellite products 
were observed to be unreliable proxy in shallow coastal 
waters of South Africa by Smit et al. (2013).  

The Mediterranean has minimal studies evaluating 
the reliability of satellite images in the coastal regions 
(e.g., Dassenakis et al., 2011; Bengil & Bizsel, 2014). 
Matarrese et al. (2004) found good consistency between 
satellite-based data and interpolated in-situ datasets via 
regional physical modeling in semi-enclosed coastal 
waters in Italy. Recently, an extensive comparison 
between in-situ measurements and satellite products 
for assessing of climate change effect in marine 
protected areas throughout the Mediterranean to 
evaluate applicability of a certain satellite derived 
product in onshore region (Von Schuckmann et al., 

2019). In addition, no specific studies have evaluated the 
reliability of the model used in the present study in the 
coastal regions in the eastern, although there have been 
validated models for the Mediterranean (e.g. Clementi 
et al., 2019). In addition, no study has evaluated the 
performance of globally available datasets for their 
reliability as proxies for seawater temperature at 
various depths in benthic ecosystems.  

To the best of our knowledge, this is the first study 
to explore the descriptive capacity of modeling products 
in a coastal benthic ecosystem. According to the results, 
modeling products exhibit good performance in the 
representation of descriptive characteristics of seawater 
temperature in coastal benthic regions. The insignificant 
differences in mean values of each variable pairs 
(excluding at 40 m) further support the application of 
model datasets for descriptive purposes in further 
studies. The time frame of the dataset could be 
determined based on the period of study or the 
sampling strategy adopted in a study in a coastal region. 
However, daily modeling datasets overestimated the 
mean value of seawater temperature at 40-m depth, 
which indicated that the modeling products could only 
be applied to a certain depth. Conversely, this significant 
difference disappeared at decreased temporal 
resolutions. As expected, smoother distributions in 
datasets were observed under decreasing temporal 
resolutions. The smoothness is the reason for the non-
significant difference in mean values in the weekly and 
monthly datasets at 40 m. The overall results of 
comparisons of variance also highlighted the 
importance of selecting the appropriate time frame. It is 
also critical to consider that the model underestimated 
variance properties under the daily and weekly time 
frames and variance properties at 40 m in the model 
were underestimated within the weekly time frame. The 
observation raises another concern on the use of 
modeling datasets after a certain depth.  

The results raised key concerns regarding the 
usability of satellite datasets for descriptive purposes. 
The daily time frame overestimated mean values 
significantly in all comparisons with the in-situ datasets. 
Previous studies globally have reported that satellite 
image-based datasets tend to overestimate 
temperature data (Smale & Wernberg, 2009; Smit et al., 
2013; Stobart et al., 2015). However, we observed that 
the mean values from satellite images could be used as 
proxies of sea surface temperatures down to 25 m based 
on weekly datasets and down to 35 m based on monthly 
datasets. Significant differences in descriptive 
characteristics of datasets between the daily and the 
other time frames could be attributed to the used of 
datasets from different sources. With regard to the 
descriptive properties of seawater temperature, 
variance with satellite image-based datasets was also 
higher than the variance with in-situ datasets, 
particularly in the comparisons in the daily and weekly 
time frames. Although satellite datasets deviate from 
actual sea water temperature values with an increase in 

https://www.trjfas.org/uploads/211205_Sup.Docu.pdf
https://www.trjfas.org/uploads/211205_Sup.Docu.pdf
https://www.trjfas.org/uploads/211205_Sup.Docu.pdf
https://www.trjfas.org/uploads/211205_Sup.Docu.pdf
https://www.trjfas.org/uploads/211205_Sup.Docu.pdf
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depth (Katsaros, 2003), in general, of the use of weekly 
and monthly datasets from satellite images in the upper 
layers is possible, and of the use of daily dataset for 
descriptive purpose as proxies of seawater temperature 
should be avoided. 

Another limitation of satellite-based datasets on a 
daily time frame, atmospheric conditions could affect 
the retrieval of signals on a daily basis leading to missing 
data. Missing data could also limit the use of such 
datasets for other purposes such as time series analyses, 
which require complete datasets.  

Significant relationships were observed mostly 
between pairs of datasets at similar depths. The 
monthly dataset exhibited relatively poor performance 
while the optimal performance was observed in the 
weekly dataset, which had relatively high CCF values 
with no lag. With regard to the time frame, similar 
performance was also observed in the satellite image-
based datasets. However, the vertical performance of 
the satellite datasets decreased gradually depending on 
depth, where more reliable relationships were observed 
up to 25 m. In addition, the model exhibited 
performance superior to the satellite-based datasets as 
proxies for seawater temperature at all time frames and 
depths.  

A technical limitation of satellite images is that 
they provide data only for the surface layer, which leads 
to relatively poor or invalid performance at depths 
greater than 20 m. Sayın et al. (2006) reported the 
formation of a sharp and seasonally stratified 
thermocline between 20 m and 35 m in a coastal region 
of the Aegean Sea. Therefore, it can be concluded that 
using such datasets in the upper mixed layer as a proxy 
of seawater temperature could offer more reliable 
results for further studies in the coastal benthic regions.  

Distribution in percentage errors in pairs of 
datasets at each depth and time frame revealed a high 
uncertainty level, particularly down to 25 m in the 
monthly time frame in the satellite-based data, which 
further demonstrates why they should not be adopted 
in further studies. Such distributions (Figure 2) also 
provide guides on the uncertainty levels of different 
sources of dataset and could facilitate the design of 
further studies. In case these datasets need to be used 
at a certain depth for descriptive purposes, a correction 
procedure can be applied to the relevant datasets using 
regression coefficients presented in this study (Table S4 
in Supplement file).  

Stobart et al. (2015) pointed out the importance of 
suitability in temporal resolution between a research 
and datasets that will be used. They suggested the use 
of satellite data for broad time frames such annual 
rather than seasonal and monthly scales, considering 
the lack of information in the latter temporal frames. 
Our study focuses on daily to monthly time frames and 
discusses in detail the advantages and disadvantages of 
such time frames with regard to the reliability as proxies 
of descriptive characteristics. Overall, our results 
pointed out the advantages of the use of the weekly 

time frame as moderate. Conversely, as the broad time 
frame in the present study, the monthly time frame 
could have limited performance based on the aims of 
the study in which it would be applied. In addition, the 
uncertainty properties of satellite datasets for time 
frames revealed broad ranges of percentage errors in 
the monthly dataset (Figure 2), although it was reliable 
as a proxy for descriptive characteristics and had 
significant a relationship with the in-situ datasets in the 
surface mixed layer. Therefore, the use of the datasets, 
particularly the satellite-based dataset, in coastal 
regions should be considered carefully depending on the 
type of study, especially for bio-ecological modeling and 
climate change studies. 

 

Conclusion 
 

Comparisons of the descriptive characteristics of 
datasets from various data sources in the present study 
revealed their advantages and disadvantages under 
different time frames. Datasets from physical models 
had more reliable results and capacity to represent in-
situ data in coastal benthic habitats. In addition, 
satellite-based datasets could also be used under key 
considerations. Monthly datasets are more reliable as 
sources of mean and variance values in long term 
studies, while weekly datasets are suitable for 
monitoring studies since changes can be detected. 
Although reasonable relationships were discerned in the 
surface mixed layer, datasets from the model could also 
be adopted when presentations below seasonal 
thermocline are required. Uncertainty analysis also 
revealed that modeling datasets have key advantages at 
each depth based on percentage error. Where required, 
the calibration coefficients presented in this study could 
be used to provide more accurate characterization at 
certain depths based on their uncertainty limits in future 
studies.  

The present study presents an important resource 
on the suitability of adopting globally available datasets 
for descriptive purposes under different time 
composites as well as presenting their reliability based 
on the uncertainty properties in the eastern 
Mediterranean Basin, particularly in the eastern Aegean 
Sea. The baseline presented highlights the potential 
application of global datasets as proxies of seawater 
temperature in future coastal benthic ecology and 
conservation studies.  
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