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Effects of Supplementing Low-Molecular-Weight Fish Hydrolysate in High 

Soybean Meal Diets on Growth, Antioxidant Activity and Non-Specific 

Immune Response of Pacific White Shrimp (Litopenaeus vannamei) 

Introduction 
 

Fish meal is one of the primary protein  sources 

in trad itional and commercial shrimp feed  

formulat ions (Hernandez, Sarmiento-Pardo, & Abdo, 

2004). However, high demand and limited supply 

have led to high prices for fish meal during the last 

few years (Kader & Koshio, 2012). Therefore, 

replacing fish meal with cost-effective alternative 

protein sources has become a focus. The use of plant 

proteins as alternative protein sources to replace fish 

meal in shrimp feed has been studied worldwide 

(Gatlin et al., 2007). However, negative effects on 

growth performance, feed intake, antioxidant activity, 

intestinal health and immune response have been 

reported in shrimp species such as Marsupenaeus 

japonicus, Litopenaeus vannamei and Penaeus 

chinensis fed high plant protein diets (Lim & Dominy, 

1990; Bulbu l et  al., 2015a;  Xie, Liu, Zeng, Niu, & 

Tian, 2016). These results may be due to secondary 

dietary amino acid composition, lower palatability, 

and presence of anti-nutritional components in plant 

protein diets (Paripatananont, Boonyaratpalin, 

Pengseng, & Chotipuntu, 2001; Amaya, Davis, & 

Rouse, 2007; Rahman et al., 2010; Yue et al., 2012b;  

Bulbul, Koshio, Ishikawa, Yokoyama, & Kader, 

2015b; Chiu et al., 2015). Meanwhile, research efforts 

are underway to identify an  appropriate blend of p lant 

products and other alternative feed ingredients to 

prevent nutritional deficiencies and ensure a proper 

supply of essential nutrients. This may further 

increase the replacement level of fish meal with plant 

proteins without detrimental effects on animals’ 

performance by restoring a proper balance of amino 

acids and increasing the palatability of the d iet (Kader 

et al., 2012a; Kader et al., 2012b). 

Fish hydrolysate is a promising core material fo r 

high plant protein diets, as it may improve growth, 

feed utilizat ion and survival rate of marine animals 

(Aksnes, Hope, Jonsson, Bjornsson, & Albrektsen, 

2006a; Aksnes, Hope, Hostmark, & Albrektsen, 

2006b; Khosravi et al., 2015). Dietary inclusion of 

protein hydrolysates can improve innate immunity, 

change intestinal morphology and enhance the 

intestinal immune response (Duarte, Vinderola, Ritz, 

Perdigón, & Matar, 2006; Khosravi et al., 2015). 
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 Abstract 

 

Supplemental effects of low-molecular-weight fish hydrolysate (LWFH) was investigated in high soybean meal (HSM) 

diets fed to Litopenaeus vannamei (0.44 ± 0.03 g) for 48 days. The HSM diet, containing 15% fish meal and 47% soybean 

meal, was supplemented with 0, 5, 10, 15 or 20 g kg-1 LWFH (HSM0, HSM5, HSM10, HSM15 and HSM20). LWFH 
significantly (P < 0.05) improved growth and the highest growth was found in HSM15. Feed intake significantly increased at 

≥ 10 g kg-1 LWFH, and the lowest feed conversion ratio was observed in HSM10 group. Shrimp survival significantly 

increased at ≥ 15 g kg-1 LWFH compared to HSM0 group. Significantly higher serum peroxidase, acid phosphatase and 

alkaline phosphatase activities were observed in HSM20 group and total antioxidant capacity increased at ≥ 15 g kg-1 LWFH. 

HSM10 group exhibited significantly higher phenoloxidase activity than HSM0, and superoxide dismutase activity enhanced 
in HSM5 and HSM10. Intestinal inflammatory genes expression assay showed the significant decrease of activating 

transcription factor 4 expression in HSM15 group compared to HSM0 group, and macrophage migration inhibitory factor 

expression decreased significantly at 5-15 g kg-1 LWFH. To conclude, 10-15 g kg-1 LWFH in HSM diet improves growth, 

antioxidant activity and innate immunity. 

 
Keywords: High soybean meal diets, Low-molecular-weight fish hydrolysate, Antioxidant activity, Innate immunity, 

Litopenaeus vannamei.   
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However, fish hydrolysates contain differently sized  

molecular weight compounds which may  affect  

absorption capacity and the rate of passage of food 

through the gastrointestinal tract (Espe & Lied, 1999). 

Low-molecular-weight peptides are the main  

components of fish hydrolysates and play an 

important role in promoting growth performance in  

cultured marine species. Some researchers have 

demonstrated the functional and bioactive properties 

of these peptides (low molecular weight, easily  

absorbed, stimulate feeding, antioxidant, 

antihypertensive, antimicrobial, and 

immunomodulatory) (Byun, Lee, Park, Jeon, & Kim, 

2009; Nazeer, Kumar, & Ganesh, 2012). Dietary  

composition affects intestinal health; thus, it can  

affect the expression of inflammatory factors in  the 

intestinal mucosa, such as lipopolysaccharide-induced 

tumor necrosis factor-α (LITAF), macrophage 

migrat ion inhib itory factor (MIF), act ivating 

transcription factor 4 (ATF4) and Ras -associated 

protein 6A (RAB6A). However, litt le is known about 

how dietary protein sources or fish hydrolysates affect 

the expression of these genes in shrimp.  

The aim of this study was to evaluate the effects 

of supplementing low-molecular-weight fish 

hydrolysate (LW FH) in h igh soybean meal diets on 

growth, antioxidant activity, non-specific immune 

response and expression of pro-inflammatory genes in 

the digestive tract of Pacific white shrimp 

Litopenaeus vannamei. 

 

Materials and Methods 
 

Preparation of Low-Molecular-Weight Fish 

Hydrolysate  

 

The LWFH was produced from whole sardine 

(Sardina melanostictus) bodies using enzymes. First, 

minced sardine was homogenized in a four-fold  

volume of distilled water and was enzymatically  

hydrolyzed with Nematolyt and Trypsase (3:1;  

Jiangsu Nanjing Pangbo Biological Engineering Co. 

Ltd., Nanjing Jiangsu, China). The enzymes were 

added at 0.4% of surimi weight, and hydrolysis was 

carried  out at 55 °C for 8 h in a water bath (pH = 7.5). 

After the enzymatic treatment, the hydrolysate was 

maintained at 95 °C for 15 min to inactivate the 

enzymes. After chilling, the hydrolysate was 

centrifuged at 5,000 rpm and 4 °C for 40 min. The 

micro -molecu lar fish hydrolysate was obtained by 

filtering through a 1,000 Da StarMem-001A 

membrane separator (Fumei Science and  Tech Co. 

Ltd., Xiamen, Fu jian, China), followed by a 200 Da 

filter. The retentate was freeze-dried and used in the 

experimental d iets. The peptide profile of the protein  

hydrolysate is provided in Fig. 1. The hydrolysate was 

freeze-dried for the peptide profile analysis. The 

peptide profile of the hydrolysate was determined 

using size exclusion chromatography and a high-

performance liquid  chromatography system 

(Aglient1200; Agilent Technologies, Palo A lto, CA, 

USA) equipped with TSK G2000 SW XL 300 mm × 

7.8 mm chromatography column (Tosoh Bioscience 

LLC., King of Prussia, PA, USA) at a detection 

wavelength of 220 nm (Zheng, Liang, Yao, Wang, & 

Chang, 2013). The samples were solubilized in water 

containing 0.3% sodium dodecyl sulphate, centrifuged 

for 10 min at 10,000 rpm, decanted and filtered before 

applied to the column. In addition, we selected 

Cytochrome C (MW12500), Aprotinin  (MW6533), 

Oxidized glutathione (MW613), amino acetic acid-

amino acetic acid-amino acetic acid (MW189), and 

glycine (MW75) as a s tandard substance to make the 

standard curve using GPC software. The instrument 

condition was as follows: the flow rate o f moving 

phase was 0.5 ml min
-1

, p illar temperature was 30 °C, 

detection wavelength was 214 nm, and the sample 

size was 20 μl. 

 

Experimental Diets 

 

Formulat ion and proximate composition of the 

experimental diets are shown in Table 1. A basal diet 

containing 15% fish meal and 47% soybean meal was 

 
Figure 1. Peptide profile of the protein hydrolysate. 

 

file:///E:/百度云同步盘/graduate%20students/李晓丽/小肽结果/C1609-13635-WangLing_1stEdit_TrackedCopy2.doc%23_ENREF_28


  X. Li et al.  /  Turk. J. Fish. Aquat. Sci. 18: 717-727 (2018) 719 

 

    

 

 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

prepared and used as a high soybean meal (HSM) 

diet. Then, the basal diet was supplemented with 0, 5, 

10, 15 or 20 g kg
-1

 LWFH to make five experimental 

diets designated as HSM0, HSM5, HSM10, HSM15, 

and HSM20. The dry ingredients were ground using a 

hammer mill and then passed through a 180 μm mesh. 

The filtered ingredients were thoroughly mixed with  

lip ids before water was added to produce a mash. The 

dough was pelleted through a 1.5-mm diameter twin-

screw granulator (CLFM4×1TS; SCUT, Guangdong, 

China). The diets were air-dried at room temperature 

for 24 h, packed in double plastic bags, and stored at 

−20 °C until use. The amino acid  composition of the 

experimental diets is shown in Table 2. Amino acid  

composition of the experimental diets was analyzed  

according to the method of GB/T18246-2000 detected 

by Pony Testing Co. Ltd (Beijing, China).  

 

Experimental Shrimp and Feeding Trial 

 

L. vannamei were supplied by a hatchery at  

Pokphand Group Co. Ltd. in Zhangzhou (Fujian, 

China). Prior to starting the experiment, all shrimp 

were kept  in  indoor tanks and fed a commercial diet  

in a temporary rearing tank for 2 weeks to acclimate 

them to the experimental condit ions. At the end of the 

acclimat ion period, 30 shrimp of similar size (mean  

weight, 0.44 ± 0.03 g) were d istributed randomly into 

each of 20 fiberg lass cylindrical tanks (150 L). Each  

diet was assigned randomly  to quadruplicate tanks. 

These tanks were part of a recirculat ing water system 

that included a settling tank, an air pump, and  a water 

pump. The shrimp were hand fed to apparent satiation 

three times daily (08:00, 14:00, and 19:00) for 48 

days. Each aquarium had a water flow velocity of 5 

L/min. During the rearing period, water temperature 

fluctuated from 28 to 31 °C, pH was 7.8 ± 0.3, 

salinity was 20–23‰, and the dissolved oxygen 

concentration was 7.0 ± 0.2 mg l
-1

. Photoperiod was 

maintained on a 12:12 light:dark schedule. All rearing 

tanks were provided with continuous aeration. 

 

Sample Collection 

 

At the end of the feeding trial, shrimp were 

fasted for 24 h before harvest. All the shrimps from 

each tank were weighed indiv idually  on a 

microbalance, and the final number of shrimp in each 

tank was recorded to determine growth parameters 

and survival (Gao et al., 2017). Hemolymph of 15 

shrimp from each  aquarium was withdrawn from the 

pericardial cavity using a 1 mL syringe and then kept 

at 4 °C overnight. Serum was obtained by 

centrifugation at 4000 rpm and 4 °C for 10 min and 

stored at −80 °C for the antioxidant enzymes activity  

analyses. The intestinal tract was removed from the 

same 6 shrimp, frozen  immediately in liquid nit rogen, 

and stored at −80 °C for inflammatory  genes 

expression assay (Huang, Wang, Zhang, & Song, 

2017). 

 

Analytical Methods 

 

Proximate Analysis of the Experimental Diets  

 

Proximate composition of experimental d iets 

Table 1 Formulation and proximate composition of the experimental diets (g kg-1) 

 

Ingredients HSM0 HSM5 HSM10 HSM15 HSM20 

Fish meal1 150 150 150 150 150 

Soybean meal2 470 470 470 470 470 
LWFH3 0 5 10 15 20 

Squid visceral paste 20 20 20 20 20 

Shrimp meal 50 50 50 50 50 

Wheat flour  223 218 213 208 203 

Fish oil  22 22 22 22 22 
Soybean oil 10 10 10 10 10 

Lecithin 10 10 10 10 10 

Choline chloride 5 5 5 5 5 

Monocalcium phosphate 15 15 15 15 15 

Premix4 10 10 10 10 10 
Sodium alginate  10 10 10 10 10 

Amino acid mixture5 5 5 5 5 5 

Proximate composition (%) 

Moisture 135 118 114 113 123 

Crude protein  445 437 457 454 456 
Crude lipid 75.6 75.5 75.5 75.4 75.4 

Gross energy (kJ/g) 189 198 198 199 198 
1
Fish meal, obtained from Tecnologica de Alimentos S.A, Peru, crude protein 665, crude lipid 86 (g kg

−1
 dry matter). 

2
Soybean obtained from Tecnologica de Alimentos S.A, Peru, crude protein 489, crude lipid 10 (g kg

−1 
dry matter). 

3
Low-molecular-weight fish hydrolysate 

4
Mineral premix (5 g kg

-1
), Vitamin premix (2 g kg

-1
), Mold inhibitor (1.5 g kg

-1
) and Ethoxyquin (0.5 g kg

-1
); Mineral premix and Vitamin 

premix was prepared according to Ye et al. (2012). 
5
Provided as percentage of total: lysine, 50; methionine, 30; threonine, 20. All amino acids are coated amino acids. 

http://www.sciencedirect.com/science/article/pii/S004484861500040X#t0015
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was analyzed in triplicates according to the standard 

methods of the Association of Official Chemists 

(AOAC, 1995). The diet  samples were oven dried at  

105 °C to constant weight to determine moisture 

content. Crude protein content was determined by the 

Kjeldahl method (N × 6.25) using an Auto Kjeldahl 

System (FOSS Kjeltec 8400, Switzerland). Lipid  

content was analyzed  according to the Soxhlet  diethyl 

ether extract ion method. Gross energy was 

determined by an adiabatic bomb calorimeter (Parr 

6300, USA). 

 

Serum Antioxidant and Non-Specific Immune 

Indices  

 

Serum enzymes activity was measured with  

commercial assay kits (Nanjing Jiancheng Institute, 

Nanjing, China) according to the manufacturer’s 

instructions. Peroxidase (POD) act ivity was measured 

following the reduction of hydrogen peroxide at 420 

nm, and determined according to the change in 

absorbance. Phenoloxidase (PO) act ivity was 

determined using a biotin double-antibody sandwich 

enzyme-linked immunosorbent assay kit following the 

manufacturer’s instructions. Total antioxidant 

capacity (T-AOC) was the amount of activity in 1 ml 

min
-1

 serum for the absorbance value to increase 0.01 

units at 37 °C. Briefly, total superoxide dis mutase (T-

SOD) activ ity was measured by the ability of the 

sample to inhib it superoxide anions generated by 

xanthine and the xanthine oxidase reaction system. 

One activity unit  was defined as the amount of 

enzyme necessary to inhibit 50% of the color 

formation measured at 550 nm. T-SOD activity was 

expressed as unit per milligram hepatic protein. Acid  

phosphatase (ACP) and alkaline phosphatase (AKP) 

activities were measured following d isodium phenyl 

phosphate decomposition. One unit was defined as the 

amount of enzyme in 1 g of tissue that produced 1 mg 

phenol every 15 min at 37 °C (Zheng et al., 2013). 

 

RNA Extraction and Real-Time Quantitative 

Polymerase Chain Reaction (qPCR) Analysis 

 

An approximately  80 mg intestinal tract  sample 

was used to extract total RNA with Trizol Reagent 

(Invitrogen, Carlsbad, CA, USA). The tissue was 

homogenized in Trizol Reagent using a fully 

automatic g rinding mill (Tissuelyser-24; Shanghai 

Jingxing Science and Technology Co., Ltd., Shanghai, 

China). The mixture was precipitated with  

isopropanol, washed twice with 75% ethanol, and the 

RNA pellet was dissolved in bacteria-free water. 

RNA purity and concentration were measured using 

an ND-2000 spectrophotometer (NanoDrop 2000;  

NanoDrop Technologies, Wilmington, DE, USA). 

RNA integrity was confirmed by 1.5% agarose gel 

electrophoresis of 1 μg RNA stained with ethidium 

bromide in 1× TAE buffer. The gels were then 

subjected to ultraviolet light and photographed in a 

GS-800 Ultrav iolet Transilluminator (UVP, Upland, 

CA, USA). A 2-μg RNA sample was synthesized to 

cDNA using the Thermo Scientific RevertAid First-

Strand Synthesis System for RT-PCR (Invit rogen) 

Table 2 Amino acid composition of the experimental diets (g kg-1 dry matter) 

 

AA/ΣAA Diets     

 HSM0 HSM5 HSM10 HSM15 HSM20 

EAA1      

Valine 49 47.9 48.1 44.3 43.5 

Methionine 31 35 35.6 31.3 29.8 

Isoleucine 31.5 35.9 29.3 34.2 32.9 

Leucine 52.8 56.9 53.8 55.8 53.2 
Phenylalanine 28.3 26.3 22.8 23.2 26.9 

Histidine 24.2 25.5 26.9 26.4 27.7 

Lysine 77 80.5 89.4 93.5 84.3 

Arginine 65.7 66 68.8 66.5 60.6 

Threonine 38.5 39.7 40.8 40.1 41.6 
Tryptophan 11 8.5 11.1 9.6 8.7 

ΣEAA 409.2 421.7 426.6 425.2 408.9 

NEAA2      

Tyrosine 45.2 47.6 41.8 45.9 46.6 

Proline 121.9 114.1 111.1 120.2 123 
Aspartic acid 92.1 92 91.3 89.7 93.8 

Serine 39.6 38.9 38.6 39.5 41.1 

Glutamic acid 175 177.3 173.6 176.5 175.2 

Glycine 48.5 45.7 49.2 44.3 46.4 

Alanine 44.7 43.5 47 39.8 47.2 
Cystine 24 19.4 20.7 18.4 18.4 

ΣNEAA 590.8 578.3 573.4 574.8 591.1 
1
 EAA: essential amino acids. 

2
 NEAA: nonessential amino acids. 
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with Oligo (dT)18 primers according to the 

manufacturer’s protocol. The reaction was incubated 

using a Pelt ier Thermal Cycler 200 (MJ Research, 

Watertown, MA, USA). cDNA integrity was 

confirmed by 1.5% agarose gel electrophoresis of 1 

μg cDNA stained with ethid ium bromide in  1× TAE 

buffer. The gels were then subjected to ultraviolet 

light and photographed in a GS-800 Ult raviolet  

Transilluminator. 

The PCR reactions were performed in a total 

volume of 20 μl, containing 1 μl of each primer (10 

μM), 9 μl of the diluted first-strand cDNA product, 

and 10 μl AceQ® qPCR SYBR® Master Mix 

(Nanjing Jiancheng Institute). The primer sequences 

for the reference gene (β-act in), LITAF, ATF4, MIF, 

and RAB6A genes were designed based on published 

L.vannamei cDNA sequences on Gen  Bank and are 

listed in Table 3. The real-time PCR program was 95 

°C for 10 min, fo llowed by 40 cycles at 95 °C for 15 

s, annealing for 15 s at 60 °C, then 60 °C for 60 s. A 

melting curve analysis was performed to confirm that 

only one PCR product was present in each react ion 

(Gao et al., 2016).  

 

Statistical Analysis 

 

All data were analyzed by one-way analysis of 

variance (ANOVA) using SPSS ver. 17.0 software 

(SPSS Inc., Chicago, IL, USA). When ANOVA 

detected a difference among groups, Duncan’s 

multip le range test was used to identify the difference 

in the means. A P-value < 0.05 was considered 

significant. Data are presented as mean ± standard 

error.  

 

Results 
 

Growth Performance  

 

Shrimp growth performance and feed utilization  

fed the experimental diets are shown in Table 4. FBW  

and WG were significantly (P<0.05) increased by the 

increment of LWFH level up to 15 g kg
-1

, and 

thereafter decreased significantly. The survival rate of 

shrimp fed the experimental diets was 65.52–80.06% 

and the highest survival rate was observed in the 

group fed the HSM15 diet, which  was significantly  

higher than that of shrimps fed HSM0, HSM5 and 

HSM10 diets (P<0.05). Significantly h igher feed  

intake was observed in groups fed ≥ 10 g kg
-1

 LWFH 

compared to HSM0 group. Feed conversion ratio was 

significantly decreased in HSM10 group in  

comparison to the group fed the basal diet. 

 

Serum Antioxidant Activity and Non-S pecific 

Immune Indices   

 

The serum antioxidant enzymes activity and  

innate immune parameters are shown in Table 5. The 

results showed significant enhancement of POD 

activity in HSM20 group compared to HSM0 and 

HSM5 groups (P<0.05). T-AOC activ ity increased in  

response to increasing dietary LWFH level and 

significantly higher activity was detected in HSM15 

and HSM20 groups compared to the other groups 

(P<0.05). Also, significantly h igher PO activity was 

observed in the group fed HSM10 group, while 

increasing supplementation level of LW FH to 20 g  

kg
-1

 resulted in a significant decrease of PO activity. 

The groups fed 5 and 10 g kg
-1

 LWFH revealed  

Table 3 Sequence of the primers used for q-PCR in this study 
 

Target gene No.sequence Forward primer (5'-3') Reverse primer (5'-3') 
Annealing temperature 

(°C) 

LITAF
1 

JN180640.1 GCAGTCAACGCACATGATCT  TTGTATTTGCCCAGGAAAGC 60 
ATF4

2 
JX908828.1 AGAACCTGCTTCCCCTGTTT  TAGCATCTGCTGGTGACAGG 60 

MIF
3 

KC513658.1 TGGCAAGTTAGGGGTTGAAG TCCCAATATCTGGTGGAAGG 60 
RAB6A

4 
JX073679.1 CTCCAGCTCTGGGATACTGC TGCTTTTCGTTCACCTTCCT  60 

β-actin AF300705.2 GCTAACCGCGAGAAGATGAC CAGGGCATATCCCTCGTAGA 60 
1LITAF: Lipopolysaccharide-induced tumor necrosis factor-α 
2ATF4: Activating transcription factor 4  

3MIF: Macrophage migration inhibitory factor 

4RAB6A: Ras associated protein 6A 

 

 
 

Table 4 Growth performance and feed utilization of Pacific white shrimp (0.44 ± 0.03 g) fed the experimental diets for 48 days 
 

 HSM0 HSM5 HSM10 HSM15 HSM20 

FBW
1 

4.53±0.2
c
 5.08±0.1

b
 5.46±0.1

ab
 5.83±0.2

a
 5.26±0.2

b
 

WG
2 

934±40.5
c
 1063±40.6

b
 1152±27.8

ab
 1236±44.0

a
 1101±43.6

b
 

FI
3
 0.97±0.03

b
 1.02±0.04

ab
 1.08±0.02

a
 1.08±0.02

a
 1.11±0.02

a
 

FCR
4
 1.23±0.03

a
 1.20±0.05

ab
 1.07±0.05

b
 1.17±0.06

ab
 1.15±0.03

ab
 

Survival rate (%) 65.5±2.1
c
 67.0±3.2

c
 71.5±3.1

bc
 80.1±1.7

a
 75.0±1.0

ab
 

Values are mean of quadruplicate groups and presented as mean ± SE. Values in the same row having different superscript letters are 
significantly different (P < 0.05). The lack of superscript letter indicates no significant differences among treatments. 
1
Final body weight (g) = total shrimp weight (g) / the number of shrimp at the end of experiment. 

2
Weight gain (%) = [(final body weight − initial body weight) / initial body weight × 100].  

3
Feed intake (% days

−1
) = W / [(N0 + Nt) / 2], W is the total feed weight (dry weight, g) shrimp ingested during the experimental period. 

4
Feed conversion ratio = dry feed fed / wet weight gain 
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significantly h igher T-SOD act ivity than those fed the 

basal diet. Significantly higher ACP and AKP 

activities were detected in the group received HSM20 

diet compared to those fed HSM0 and HSM5 diets. 

 

LITAF, ATF4, MIF, and RAB6A mRNA 

Expression Levels 

 

LITAF, ATF4, MIF, and RAB6A mRNA 

expression levels are shown in Table 6. The highest 

expression level of LITAF was detected in HSM20 

group which significantly differed from that of the 

groups fed HSM10 and HSM15 diets. ATF4 mRNA 

expression was significantly lower in the HSM15 

group than that in the HSM0 group. MIF mRNA 

expression was significantly decreased in groups fed 

5-15 g kg
-1

 dietary LWFH in comparison to those fed 

HSM0 and HSM20 diets. No significant differences 

were observed in RAB6A expression among dietary  

treatments (P>0.05); however, it seemed to be 

upregulated as LWFH supplementation level was 

increased. 

 

Discussions 

 
Previous research on the biological functions of 

dietary fish hydrolysates focusing on cultured fish 

species revealed their promot ing effects on growth 

and feed utilization (Cahu, Infante, Quazuguel, & 

Gall, 1999; Aksnes et al., 2006a; Aksnes et al., 

2006b; Zheng, Liang, Yao, Wang, & Chang, 2012;  

Zheng et al., 2013; Cai et al., 2015; Khosravi et al., 

2015). Niu et al. (2014) reported that adding fish 

protein hydrolysate increases growth rate and feed 

efficiency of L. vannamei. Similar results were also 

observed in rainbow trout (Aksnes et al., 2006a). 

Results of the present study confirmed the previous 

findings suggesting that a certain amount of dietary  

LWFH promotes growth performance and feed 

efficiency in L. vannamei. Protein hydrolysates may 

improve animal growth and feed utilizat ion because 

free amino acids and low molecular weight 

compounds released during hydrolysis may  act as 

feed attractants, promoting FI and W G (Berge & 

Storebakken, 1996; Carvalho, Sá, Oliva-Teles, & 

Bergot, 2004; Grey, Forster, Dominy, Ako, & Giesen, 

2009; Chotikachinda, Tantikitti, Benjakul, Rustad, & 

Kumarnsit, 2013; Ho, Li-Chan, Skura, Higgs, & 

Dosanjh, 2014). A feed-promoting effect was also 

observed in the present study, as FI was increased 

when the LWFH level was increased in the 

experimental diets. Another reason may be that the 

experimental fish hydrolysates produced in the 

present study mainly contained low molecular weight 

Table 5 Serum non-specific immune responses and antioxidant enzymes activity of Pacific white shrimp fed the 
experimental diets for 48 days 

 

 HSM0 HSM5 HSM10 HSM15 HSM20 

POD1 35.3±0.4b 35.4±0.3b 36.8±0.7ab 36.8±0.4ab 38.1±0.9a 

PO2 5.18±0.12b 5.07±0.02b 5.42±0.07a 5.28±0.05ab 4.77±0.08c 

T-AOC3  5.49±0.4b 6.25±0.2b 6.25±0.2b 7.52±0.4a 7.89±0.4a 

T-SOD4 333.7±8.6c 350.7±2.8ab 356.9±4.8a 348.9±5.4abc 336.0±2.2bc 
AKP5  6.09±0.6b 6.37±0.9b 8.72±1.6ab 8.24±0.4ab 9.49±0.5a 

ACP6  15.95±2.1b 18.66±1.8b 20.675±2.3ab 20.57±0.5ab 22.84±1.7a 

Values are mean of quadruplicate groups and presented as mean ± SE. Values in the same row having different superscript letters are 
significantly different (P < 0.05). The lack of superscript letter indicates no significant differences among treatments. 
1
Peroxidase activity (U ml

-1
) 

2
Phenol Oxidase activity（U L

-1） 
3
Total Antioxidant Capacity (U ml

-1
) 

4
Total Superoxide Dismutase activity (U mg prot

-1
) 

5
Alkaline Phosphatase activity (U gprot

-1
) 

6
Acid Phosphatase activity (U gprot

-1
) 

 
 

Table 6 Relative expression level of LITAF, ATF4, MIF and RAB6A genes in Pacific white shrimp fed the experimental 

diets for 48 days 

 

Index HSM0 HSM5 HSM10 HSM15 HSM20 

LITAF1 1.00±0.25ab 0.98±0.19ab 0.55±0.14b 0.85±0.03b 1.46±0.04a 

ATF42 1.00±0.08a 0.90±0.10ab 0.59±0.21ab 0.43±0.03b 0.71±0.26ab 
MIF3 1.00±0.05a 0.52±0.14b 0.38±0.10b 0.46±0.10b 1.05±0.11a 

RAB6A4 1.00±0.15 0.93±0.11 1.06±0.18 1.10±0.22 1.13±0.21 

 
Mean values and standard error (± SE) are present for each parameter. The values of the expression of the target genes are presented as 
relative to control (set to 1). Data were normalized by β-actin. 
Values are mean of quadruplicate groups and presented as mean ± SE. Values in the same row having different superscript letters are 
significantly different (P < 0.05). The lack of superscript letter indicates no significant differences among treatments. 
1
Lipopolysaccharide-induced tumor necrosis factor-α 

2
Activating transcription factor 4

 

3
Macrophage migration inhibitory factor

 

4
Ras associa18: 881-889 (2018)ed protein 6A 
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compounds (essential amino acids, such as lysine and 

methionine; nucleotides, anserine and taurine) that 

stimulate production of insulin-like growth factors I 

and II and growth  hormone, which  enhance growth 

performance (Hevrøy et al., 2007; Espe, Hevrøy, 

Liaset, Lemme, & El-Mowafi, 2008; Martínez-

Alvarez, Chamorro, & Brenes, 2015). In this study 

further increment of LWFH level from 15 to 20 g kg
-1

 

resulted in significant decrease of growth 

performance suggesting that dietary LWFH level 

should be controlled strictly and that an excessive 

dietary LWFH level is detrimental to shrimp. This 

may be because high quantities of free amino acids in 

feed can change absorption rates in the 

gastrointestinal tract, which induce premature 

absorption of particular free essential amino acids in 

relation to absorption of amino acids presented in 

polypeptide chains (Martínez-Alvarez et  al., 2015). 

Notably, high free amino acid  and di- and tri-peptide 

concentrations in feed may be rap idly absorbed by 

enterocytes and metabolized rather than being used 

for protein synthesis and growth, which could saturate 

intestinal transporters, resulting in imbalanced amino 

acid absorption and reduced retention of dietary 

protein (Cahu, Infante, Quazuguel, & Gall, 1999;  

Aragao et al., 2004; Niu et al., 2014). 

In the present study, the survival rate of shrimp 

was increased with increasing dietary LWFH 

supplementation level up to 15 g kg
-1

, and slightly 

decreased thereafter. A previous study on Japanese 

flounder (Paralichthys olivaceus) also showed that 

increasing the level of size-fract ionated fish 

hydrolysate in h igh plant protein  diet leads to higher 

survival rate (Zheng et al., 2012). However, overall 

the survival rate of shrimp (65.52–80.06%) in the 

present study was relatively low in comparison to the 

previous studies (75.0%–98.9%) (Rahman et al., 

2010; Yue et al., 2012b). This may be due to 

differences in dietary composition. In the present 

study, a very high level of soybean meal (47%) was 

used as dietary protein source which may negatively 

affect shrimp health and survival rate resulting from 

imbalanced amino acids, lower palatability and 

presence of anti-nutritional and toxic factors, and 

indigestible carbohydrates (Bulbul et al., 2015a). The 

improvement of shrimp survival rate by  adding 

LWFH to the soybean meal based diets can be due to 

the improved nutritional quality.  

Enzymatic hydrolysis of proteins can produce 

biologically act ive peptides with immunostimulat ing 

and antibacterial propert ies (Kotzamanis, Gisbert, 

Gatesoupe, Infante, & Cahu, 2007; Kim & 

Wijesekara, 2010). The proPO system is 

acknowledged to be the most important immune 

system in crustaceans (Iwanaga & Lee, 2005). The 

terminal enzyme of the proPO system, PO act ivity is 

involved in crucial immune responses of invertebrate 

animals (Soderhall & Cerenius, 1998). T-SOD is one 

of the main antioxidant enzymes which can detoxify  

from superoxide rad ical by d ismutation and H2O2 

formation, while POD is one enzyme involved in  the 

cellu lar detoxificat ion of H2O2 (Dorr, Pacin i, Abete, 

Prearo, & Elia, 2008; Regalado & García-

Almendarez, 2004). T-AOC is a comprehensive index 

that is used to measure the function status of the 

organic antioxidant system, which represents and 

reflects the organic antioxidant enzyme system and 

non-enzymatic system to external stimulation of 

compensatory ability and the state of the metabolis m 

of free radicals (Tan, Dian-Yi, Yan, & Liang, 2005). 

In our study, serum POD activ ity and T-AOC were 

enhanced by increasing LWFH level and the highest 

activities were found at 20 g kg
-1

 LWFH. Also, the 

shrimp fed HSM10 diet exh ib ited the highest PO and 

T-SOD activ ities. Therefore, including a moderate 

level of LWFH in  the diet is necessary to enhance the 

non-specific immune response and antioxidant 

activity in shrimp. Several researchers have reported 

improved immune response of fish following protein  

hydrolysates administration. Including approximately  

50 g kg
-1

 krill hydrolysate, shrimp hydrolysate or 

tilapia hydrolysate in d iets for red  seabream (Pagrus 

major) improved innate immunity and disease 

resistance (Bui, Khosravi, Fournier, Herault,  & Lee, 

2014). Liang, Wang, Chang, & Mai (2005) found that 

addition of 150 g  kg
-1

 fish protein  hydrolysate 

(hydrolyzing pollock, Theragra chaloogramma with  

formic acid and protease) stimulates the non-specific 

immune response in sea bass (Lateolabrax japonicus). 

Tang, Wu, Zhao, & Pan (2008) also certified that with  

dietary supplementation of 100 g kg
-1

 FPH 

(hydrolyzing pollock, Theragra chalcogramma with  

Flavourzyme and Alcalase), immunity of large yellow 

croaker (Larimichthys crocear) can be upregulated. 

The immune enhancement effect of fish protein 

hydrolysates may  be related to the small and medium-

sized peptides (500–3,000 Da) (Gildberg, Johansen, & 

Bøgwald , 1995). Bøgwald, Dalmo, Leifson, Stenberg, 

& Gildberg (1996) and Gildberg et al. (1995) 

demonstrated that the non-specific defense system of 

fish can be stimulated by small and medium-sized  

peptides from fish protein hydrolysate. AKP and ACP 

are marker enzymes of lysosome macrophages in the 

immune system of shrimp and are important indices 

of immune function and health. In the present study, 

supplementing 20 g LWFH/kg diet significantly  

enhanced AKP and ACP activ ities indicat ing 

enhanced immune response. However, Zheng et al. 

(2013) reported no significant changes in AKP and 

ACP activ ities of turbot (Scophthalmus maximus L.) 

following FPH administration. 

The innate immune system of invertebrates is an 

important defense against infectious agents (Hoebe, 

Janssen, & Beutler, 2004; Iwanaga & Lee, 2005). 

LITAF functions as a transcription factor regulat ing 

expression of the tumor necrosis factor-ɑ gene and 

various inflammatory cytokines in response to 

stimulat ion by lipopolysaccharide (Jin et al., 2012). 

Bushell et al. (2011) reported that LITAF mRNA 

expression and protein levels are higher in tissues 
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with inflammatory bowel d isease compared with  

those in normal tissues, strongly supporting the 

participation of LITAF in intestinal inflammation. 

ATF4 is a potent stress-responsive gene thought to 

play a protective ro le by regulating cellular adaptation 

to the integrated stress response. Overexpression of 

ATF4 is frequent in a wide variety of tumors to 

protect tumor cells against mult iple stressors (Zhu et 

al., 2012). MIF is an inflammatory mult ifunctional 

cytokine in vertebrates and plays a significant ro le as 

a regulator of innate and adaptive immunity (Baugh & 

Richard, 2002; Calandra & Roger, 2003). Inada et al. 

(2013) suggested that MIF is important in innate 

immunity of Kuruma shrimp, which was the first 

report on the homology of a shrimp cytokine gene to 

vertebrate MIF. Several studies have indicated that 

members of the RAB family of s mall GTPases 

participate in the regulation of numerous signal 

transduction pathways that strongly affect cell 

proliferation, cell nutrit ion, innate immune response 

and compartmental fragmentation during mitosis and 

apoptosis through their effectors (Bucci & Chiariello, 

2006). Yue et al. (2012a) cloned the L. vannamei 

RAB6A gene and predicted that it may  take part in  

cell endocytosis and the antiviral immune reaction. 

LITAF, MIF, ATF4, and RAB6A are L. vannamei 

inflammatory factors and their expression is affected 

by the healthy, nutritional conditions. Our results 

showed that dietary inclusion of 10 – 15 g kg
-1

 LWFH 

significantly decreased LITAF, MIF, and ATF4 

expression levels compared with those of shrimp fed  

the HSM0 d iet, while further increment of LW FH up 

to 20 g kg
-1

 increased expression of these factors. This 

may  have occurred because soybean meal contains 

various compounds such as lectins, saponins, and 

allergens that can cause histological changes in the 

fish intestine (Buttle et al., 2001; Bakke-McKellep et  

al., 2007; Knudsen, Jutfelt, Sundell, Koppe, & 

Frokiaer, 2008). These results suggest that including a 

moderate amount of LWFH in high soybean meal 

diets regulates the expression of particular 

inflammatory factors to strengthen innate immunity  

and maintain homeostasis in shrimp. The s mall 

peptides in LWFH play a key role in immune 

regulation, including antioxidant capacity, anti-

microbial activ ity, and antimicrobial and tumor cell 

inhibitory activit ies (Luna-Vital, Mojica, Mejía, 

Mendoza, & Loarca-Piña., 2015). Oxidoreductases 

inhibit the enzymatic activ ity of MIF (Yin, Shen, Hu, 

& Wu, 2012). Therefore, the changes in MIF gene 

expression caused by dietary peptides may be due to 

changes in oxidoreductase activities, such as PO and 

T-SOD. No significant differences were observed in 

RAB6A gene expression levels among the dietary 

treatments at the end of our experiment. A similar 

result was observed in healthy Prawns (Yue et al., 

2012a). Our results indicate that the relative levels of 

LITAF, MIF and ATF4 expression can be used as 

indices to evaluate the intestinal immune response in 

shrimp fed high plant protein diets.   

In conclusion, the present results indicated that 

supplementation of LW FH in  high soybean meal diets 

can improve growth, feed utilization, antioxidant 

activity and innate immunity and that the optimum 

inclusion level seems to be 10-15 g kg
-1

 of diet. 
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