Effects of Probiotic (Bacillus sp.) Supplementation during Larval Development of Gilthead Sea Bream (Sparus aurata, L.)

Nihan Argı¹, Cüneyt Suzer¹*, Alize Gökvardar¹, Fatih Başaran¹, Deniz Çoban¹, Şükrü Yıldırım¹, H. Okan Kamacı¹, Kürşat Fırat¹, Şahin Saka¹

¹ Ege University, Faculty of Fisheries, Aquaculture Department, 35100, Bornova, Izmir, Turkey.
² Nektar Yem Inc. Narlıdere, İzmir, Turkey.
³ Adnan Menderes University, Faculty of Agriculture, Department of Aquaculture Engineering, 09010 Aydın, Turkey.

* Corresponding Author: Tel.: +90.232 3115214; Fax: +90.232 3883685;
E-mail: cuneyt.suzer@ege.edu.tr

Received 8 October 2012
Accepted 10 June 2013

Abstract

In this study, the effects of administration of commercial probiotic, Bacillus sp., were examined on growth parameters and digestive proteases (alkaline and acid proteases) activities in gilthead sea bream, Sparus aurata, during larval development until on day 40. Probiotics were supplemented in triplicate from on day 3 coinciding with starting of exogenous feeding. In the experimental group, probiotic was introduced to rotifer and tank water until 20 days after hatching. Also, control group did not receive probiotic. In experimental group, the specific activities of alkaline protease was significantly higher (p<0.05) in larvae compared to control group. Acid protease activity was not effected by probiotic supplementation however, it was relatively higher in experimental group than the control (P>0.05). Additionally, no significant differences were found in both survival (8.5% higher) and specific growth rate (0.7% higher) larvae of S. aurata that had probiotic supplemented by rotifer with water as compared to controls (P>0.05). Consequently, specific activities of alkaline and acid protease could be significantly increased by the administration of Bacillus sp. to live food with water and therefore; this method would be more effective for obtaining of relatively better growth parameters and nutritional condition in S. aurata larvae.

Keywords: Bacillus, Probiotic, digestive enzyme activity, growth, survival, Sparus aurata.

Probiotik (Bacillus sp.) Eklenmesinin Çipura (Sparus aurata, L.) Larvalarında Gelişime Olan Etkileri

Özet

Bu çalışmada, çipura larva yetiştiriciliğinde 40. güne kadar ticari bir ürün olan probiotik bakteri (Bacillus sp.) eklenmesinin larvalarda büyüme parametreleri ve sindirim enzimleri (alkalın ve asit proteaz) üzerine olan etkileri incelenmiştir. Bugün denemeler 3 tedarik yürütülmüş ve probiotik eklenmesi ağz açılımı ile birlikte eş zamanlı olarak yumurta verilmiştir. Deneme grubunda, rotifer kültüründe ve tank ortamına eklenmiştir. Bunun yanında, kontrol grubuna herhangi bir uygulama yapılmamıştır. Deneme grubunda, alkalın proteaz spesifik aktivitesi kontrol grubuna göre önemli derecede yüksek bulunmuştur (P<0.05). Asit proteaz aktivitesi ise probiotik eklenmesinden etkilenmemiş bununla birlikte kontrol grubuna göre aktivite görece yüksek tespit edilmiştir (P>0.05). Ek olarak, rotifer kültüründe ve tank ortamına eklenen çipura larvalarının yaşam oranları (%8.5 daha yüksekti) ve spesifik büyüme oranı (%0.7 daha yüksekti) değerlendirildiğinde kontrol grubuna göre önemiz farklılıklar göstermiştir (P>0.05). Sonuç olarak, probiotiklerin canlı yem kültür ve tank ortamına eklenmesi alkalin ve asit proteaz aktivitesini önemli oranda artırmıştır, bu yüzden probiotiklerin bu yöntemle uygulanmasını, bitki ve besinlerin durumları açısından daha etkili olduğuna sonucuna varılmıştır.

Anahtar Kelimeler: Bacillus, probiotik, sindirim enzimleri aktivitesi, büyüme, yaşama oranı, Sparus aurata.

Introduction

During the last decade, using of chemical drugs, especially antibiotics, have become limited due to developing of resistance by certain pathogens. Therefore, in order to control and/or elimination of using of antibiotics in aquacultural systems more efforts have been conducted for obtaining of knowledge. This situation is accelerated to use alternative methods for solution of this problem. It is commonly reported that in order to optimize aquatic environment, preventing fish diseases and improving to control pathogens in culture systems, the supplementation of probiotics is the common method.
Probiotics have been identified as live microorganisms colonized in the intestine and/or animal originated microbial supplements could be effected fish health by improving the intestinal microbial balance. (Gatesoupe, 1999, 2007; Verschuere et al., 2000; Balcázar et al., 2006; Wang et al., 2008; Dimitroglou et al., 2011). Nowadays, probiotics in aquaculture has being commonly supplemented for controlling of disease and also rising up of feeding and husbandry parameters. As determined by several authors, Bacillus species bacteria are widely used as a probiotic bacteria in aquatic animal nutrition such as Bacillus cereus, B. toyoi, B. licheniformis and B. subtilis (Balcázar et al., 2006; Ziaei-Nejad et al., 2006; Wen-Ying et al., 2010; Avella et al., 2010; Jafaryan et al., 2011; Wu et al., 2012; Mohapatra et al., 2012). The useful effects of these probiotics as a nutrient supplementary additive include relatively higher rates of growth feed efficiency, and also prevention of intestinal disorders and pre digestion of anti-nutritional factors present in the ingredients. Also, recent studies focused on probiotics are mainly related with resistance to some aquatic pathogens such as Vibrio sp. (Villamil et al., 2003; Planas et al., 2006), Amylolectinum ocellatum (Li et al., 2005), Carnobacterium sp. (Robertson et al., 2000), and microbial monitoring but some studies especially aimed on growth performance, feeding parameters, and also increase of feed efficiency with enzymatic activity in fish. Increasing efforts and interests for description of possible use of probiotics in both marine fish species such as summer flounder, Paralichthys dentatus, (Eddy and Jones, 2002) common dentex, Dentex dentex, (Hidalgo et al., 2006) and Japanese flounder, Paralichthys olivaceus, (Taoka et al., 2006) and freshwater teleosts such as rohu, Labeo rohita (Ghosh et al., 2003), the Chinese carps, Hypophthalmichthys molitrix and Clenopharyngodon idella, common carp, Cyprinus carpio, tilapia, Oreochromis mossambica, walking catfish, Clarias batrachus, the murrel, Channa punctatus, (Bairagi et al., 2002), rainbow trout, Oncorhynchus mykiss (Panigrahi et al., 2005), and Nile tilapia Oreochromis niloticus (El-Haroun et al., 2006).

More studies have been focused that probiotics has been widely using for increasing both feed conversion ratio and efficiency and also digestive enzyme activities. However, little studies have been carried out based on growth performances and digestive enzyme activities to incorporate probiotics effects in marine fish cultured species S. aurata (Salinas et al., 2005, 2006; Díaz–Rosales et al., 2006; Suzer et al., 2008; Avella et al., 2010) freshwater carp species Cyprinus carpio (Wang and Xu, 2006) and Clenopharyngodon idella, (Wu et al., 2012) and also shrimp Penaeus vannamei, (Wang, 2007; Zhou et al., 2009) Also, beneficial effects of probiotics are well known in aquaculture, there is limited information about influence of Bacillus sp. probiotics on digestive enzyme activities in gilthead sea bream (S. aurata), which is one of the most valuable and economic species cultured in Mediterranean aquaculture. The aim of this study is to investigate using of Bacillus sp. and their mix, as probiotics supplements by live food for gilthead sea bream (S. aurata), until 40 days after hatching (DAH) during the larval development.

Materials and Methods

Larval Rearing

Larviculture was conducted in green water recirculated system in triplicate and larvae were stocked 80 ind.1_l1 densities at 10 m² cylindrical tanks and also larval rearing parameters and protocols were carried out according to Suzer et al. (2008). Physiochemical parameters of sea water such as temperature, dissolved oxygen, salinity, pH, ammonia and nitrite levels were recorded daily. During the larval rearing, water temperature was gradually increased between 17 and 22 °C. Moreover, oxygen saturation (>85%), salinity (38.0‰) and pH (7.7) were maintained, respectively. Ammonia and nitrite were measured and presented constant values always which were below 0.01 mg.l–1. No flow rate in tanks was performed for the first 2 days of the culture period. From day 3 to 12, the tank water was partially replaced (5–7% daily) by draining a filter (200 μm). Flow rate was increased slowly from 2 to 20% with the age of the larvae. Photoperiod was set on a 24 h light cycle daily until end of algal addition for green water technique (20 DAH) and then 16-h light and 8-h dark until end of the experiment (40 DAH).

Concurrently with mouth opening from 3 to 20 DAH, newly hatched larvae were fed by two strains of rotifers (Brachionus plicatilis but mainly with Brachionus rotundiformis) at a density of 10–15 individuals.ml–1 for sufficiently feeding of whole larvae and also they enriched with algae and enrichment media (S.presso, Artemia Systems SA, Ghent, Belgium) plus green-water composed of Nannochloropsis sp., Chlorella sp., Tetraselmis sp. and Isochrysis sp. at a density of 1.5–2 x 10³ cells.ml–1. Between 10 and 30 DAH, Artemia nauplii grade (AF 480 INVE Aquaculture, Ghent, Belgium) were introduced 4–7 individuals.ml–1 densities and then Artemia metanauplii were supplemented from 25 DAH until on day 40 at 2–4 individuals.ml–1 (EG, Artemia Systems SA, Ghent, Belgium), both enriched with Protein Selco (Artemia Systems SA, Ghent, Belgium). Larval feeding regime was summarized in Figure 1.

Experimental Design

The commercial probiotic used in this study Bactosafe (solid form) BernAqua NV, Olen, BELGIUM) contained spores of 3 species of Bacillus (i.e., Bacillus subtilis, B. licheniformis and B. cereus)
and other bacteria *Pediococcus acidilactici*. Before administration of the probiotic, spores were rehydrated to vegetative bacteria according to manufacturer’s instructions (10 ppm per m3).

In Experiment 1, probiotics was added to both live food (rotifer) and directly larval tank until 20 DAH.

Experiment 2 was accepted as control group which had received no probiotic in either live food or tank’s water.

Sampling

In order to measure of growth, larvae collected from each groups and each tanks by 7 days interval until 35 DAH and at the end of the experiment. (30 larvae/group). Specific growth rate was calculated by formulae SGR (specific growth rate) $= 100 \left(\ln FBW - \ln IBW \right) / \Delta t$, with IBW, FBW: initial, final body weight of fish (mg), Δt: time interval (day). At the end of the experiment, survival of larvae was determined by counting larvae which were remained in the tanks.

Dissection of the Digestive Tract

In order to perform enzymatic analysis, groups of larvae in triplicate sampled from each tank 7 days interval in similar with above sampling. For each sampling time, total 100 larvae until 10 DAH, total 75 larvae until 20 DAH and total 50 larvae were sampled until 40 DAH. Samples were usually collected at the same hour (08:00) and depths (30-50 cm), before food distribution. Digestive tracts were used for enzymatic analysis in larvae and therefore, larvae were dissected on a glass maintained at 0 °C for isolation of the gastrointestinal tract.

Enzymatic Assays

Digestive tract samples were collected and homogenised in 5 volumes v/w of ice-cold distilled water (pH 7.0). Extracts utilized for enzyme assays were obtained after homogenization of larvae (35 mg ml$^{-1}$) in cold 50 mM Tris-HCl buffer, pH 7.5, followed by centrifugation (13,500xg; 30 min at 4 °C). Alkaline protease activity was measured using the method of Walter (1984) using casein as substrate (pH 9.0). Acid protease activity was determined using haemoglobin as the substrate in (pH 2.0) (Anson, 1938). Supernatant absorbance was detected at 280 nm. Enzymatic activities were expressed as specific activities (mU/mg protein$^{-1}$). Protein was determined by the Bradford method (Bradford, 1976). All enzymatic analyses were measured weekly at intervals until 35 DAH and at the end of the experiment and also were analyzed by Jenway 6300 UV−Visible Spectrophotometer.

Statistical Analysis

All measurements were carried out in triplicate. Results are presented as mean ± SD ($n=30$ for larval growth; $n=3$ for enzymatic analysis). Levene test was used for determination of the variance homogeneity. Significant differences at survival data and also larval growth and enzymatic activity data among experimental groups were compared by Fisher’s chi-square test and by one−way ANOVA, followed by Newman–Keul’s multiple range test, respectively at 5% level of significance.

Results

Larval Growth and Survival

Larval growth of *S. aurata* determined in experimental groups until 40 DAH is presented in Figure 1. In experimental group, larvae exhibited their weight by a factor more than of 20−fold multiplied from 7 to 40 DAH. At the end of the experiment, the best results on total length development and weight
were determined in Exp.1 probiotic given groups as 21.17±1.8 mm and 28.12±4.2 mg. Besides, these values were estimated as 17.03±1.2 mm and 24.28±3.1 mg for control group (Figure 1). There are no significant differences on weight and total length development in experimental and control group (P>0.05). Moreover, final survival rates as 16.7% and 8.2% and also specific growth rate were 7.8%.day\(^{-1}\) and 7.1%.day\(^{-1}\) for experimental and control group, respectively. Growth performance and husbandry parameters in experimental group was not significantly higher than control group (P>0.05).

Enzyme Activity

The specific activity of alkaline protease enzymes demonstrated exponentially increase more than 14-fold in experimental group to 28 DAH. After this date, this activity slightly declined until end of experiment. The peak of specific activity of alkaline protease enzymes was measured on day 28 in experimental group as 162.3±18.3 mU/mg protein\(^{-1}\) (Figure 2). There were significant differences between experimental and control group for alkaline protease enzyme activity (P<0.05).

In contrast to alkaline protease activity, no specific activity of acid protease was measured until 28 DAH, but after this date acid protease activity slowly increased consecutively in all groups. Especially, sudden increases were determined after 35 DAH synchronously with decreases in alkaline protease activity and also weaning by microdiet. At the end of the experiment, no significant differences were found between groups (P>0.05). The highest acid protease activity was measured on day 40 in experimental group on day 40 as 11.6±2.1 U/mg.

![Graph showing enzyme activity](image1)

Figure 2. Specific activities of alkaline protease during larval development of *S. aurata* up to day 40. Results are expressed as means±SD (n=3).

![Graph showing enzyme activity](image2)

Figure 3. Specific activities of acid protease during larval development of *S. aurata* up to day 40. Results are expressed as means±SD (n=3).
protein−1 (Figure 3).

Discussion

Growth in all experimental groups was satisfactory but supplementation of probiotic presented slight increases in growth performance of larvae as compared to control. Moreover, similar higher profiles for SGR and survival date were recorded in experimental groups however, it is clearly determined that probiotic administration by rotifer promoted growth parameters of larvae. Also, obtained results from experimental group which probiotic was supplemented by rotifer and water presented that growth parameters were relatively higher compared to control because of the fact that administration of the probiotic significantly changed the proportion of Bacillus bacteria in the gut flora (Salinas et al., 2005; Avella et al., 2010). Similar findings were noted in Indian white shrimp, Fenneropenaeus indicus, (Ziaei-Nejad et al., 2006), and shrimp Penaeus vannamei, (Wang, 2007). In these studies, it was reported that supplementation of probiotics by live food and/or extruded pellet food caused to significant increases in both growth performance and parameters in compared to basal diets and/or no probiotic administration. These findings were in agreement with freshwater species such as Nile tilapia, Oreochromis niloticus and carp, Cyprinus carpio, (Wang and Xu, 2006) and marine fish species such as red drum, Sciaenops ocellatus, (Li et al., 2005) and Japanese flounder, Paralichthys olivaceus, juveniles (Taoka et al., 2006).

In cultured species, it is well known that one of the main beneficial effects of probiotics is enhancement of nutritional conditions of host species which is accelerated of production of supplemental digestive enzymes, prevention of gastrointestinal obstacles and anti-nutritional factors present in the ingredients (Gatesoupe, 1999, 2007; Thompson et al., 1999; Balcázar et al., 2006). Concisely, after transition through the stomach, in order to maintain growth and promote of intestinal enzymes (amylase, protease and lipase) probiotics colonize in the intestine and utilize by a large number of carbohydrates (Gatesoupe, 1999; El-Haroun et al., 2006). However in aquaculture, probiotics could be supplemented as both food supplement and additive to the culture environment (Ziaei-Nejad et al., 2006; Suzer et al., 2008; Avella et al., 2010). In this study, Bacillus sp. probiotics were administered by live food (rotifer) and tank water, thus, it was clearly determined that probiotics colonized and worked effectively along the intestine and also accelerated larval growth, survival and especially digestive enzyme activities. Moreover, according to results, it is strongly presented that relatively better results for growth performance and enzymatic activity were obtained by rotifer supplementation due to colonization in live food guts and transition to larval fish gut by digestion process. It is well recorded that all the probiotic-supplemented diet and/or addition of probiotics to diet caused to better growth, SGR and survival parameters by the same experimental design in some marine organisms such as shrimps Penaeus vannamei and Fenneropenaeus indicus (Ziaei-Nejad et al., 2006; Wang, 2007). Also, similar results were reported by Ghosh et al. (2003) for Indian carp Labeo rohita, red drum, Sciaenops ocellatus, (Li et al., 2005) and Japanese flounder, Paralichthys olivaceus, juveniles (Taoka et al., 2006) common carp C. carpio (Wang and Xu, 2006). In addition to these beneficial effects, it is clearly estimated that supplementation of probiotics by live food and/or culture water presented relatively better parameters on immune responses and for decline of bacterial activity in some teleosts such as S. aurata (Salinas et al., 2005, 2006; Diaz-Rosales et al., 2006), Paralichthys dentatus (Eddy and Jones, 2002), Scophthalmus maximus (Planas et al., 2006), and Salmo salar (Robertson et al., 2000) and also bacterial loading of aquatic organisms and environments (Gatesoupe, 1999, 2007; Balcázar et al., 2006; Wang et al., 2008).

As described by several authors, Bacillus bacteria have been widely used as probiotics and also especially B. subtilis, a gram-positive non-pathogenic, spore-forming bacterium, it has been widely using for oral bacterial therapy, prophylaxis of gastrointestinal disorders, improving culture environmental quality and the promote the survival of cultured organisms (Irene et al., 2005; Wang, 2007; Avella et al., 2010; Wen-Ying et al., 2010; Mohapatra et al., 2012). In addition to these, particularly, B. subtilis is known to produce digestive proteases and other enzymes that enable it to contribute to the natural digestion activity of the cultured species and it can be a source of micro and macro-elements as feed (Verschueren et al. 2000; Ziaei-Nejad et al., 2006; Jafaryan et al., 2011). It is commonly known that the knowledge on level of activity of digestive enzymes could be used as a descriptive tool to estimate growth of the fish larvae, digestive capacity and food preferences, as well as their further survival rate for cultured species. Also, determination of digestive enzyme activities could be better for identifying nutritional capabilities of these organisms during early ontogeny under culture conditions (Ueberschaer, 1993; Kolkovski, 2001; Zambonino Infante and Cahu, 2001; Suzer et al., 2008). In this study, Bacillus administration as probiotics is caused to significant increases in the specific activity of alkaline protease which is effectively works in alkaline pH ranges in gut of digestive tract of larvae. It is thought that this phenomenon could be related with gut colonization of Bacillus sp. which is caused to enhanced digestion and absorption of food, which in turn contributed to the accelerated survival and growth in S. aurata larvae. The promoted growth performance of larvae could be originated from improved digestive enzyme activities induced by the probiotics along the intestine. During the early ontogeny of Sparids,
digestive system where the probiotics could be worked effectively and because gram-positive bacteria especially members of the genus Bacillus could be secreted a wide range of exoenzymes (Ziaei-Nejad et al., 2006; Avella et al., 2010; Wu et al., 2012; Mohapatra et al., 2012). Furthermore, it is clearly determined that the administration methods strongly affected the success of gut colonization of the probiotics. In this study, administration of Bacillus probiotics to S. aurata larvae presented relatively better increased specific activities of alkaline protease in the larval gastrointestinal tract. Therefore, although Bacillus sp. supplementation significantly affected alkaline protease activity along the intestine, no significant differences were determined for acid protease activity. For this reason, specific activity of alkaline protease in experimental group was enhanced by probiotics supplementation. Similar findings are well noted by Avella et al. (2010) administered the mixture, composed of four B. subtilis, B. strains, B. licheniformis, and B. pumilus was provided via rotifers and Artemia nauplii and added to the water or supplied exclusively via live prey in sea bream larviculture. They noted that the Bacillus sp. mixture significantly increased growth in terms of growth parameters, feeding efficiency and metabolism at larval and juvenile stages of S. aurata (Avella et al., 2010). In our previous study, we supplemented Lactobacillus spp., probiotics under similar experimental conditions in larvae of S. aurata until 35 DAH, significant increases were found in both growth performance and digestive enzyme activities in larvae which probiotics had been supplemented by live food (rotifer and Artemia) and live food with water (Suzer et al., 2008). On the other hand, in order to establish successfully gut colonization, gastrointestinal pH could be stated in alkaline ranges between 8.0 and 10.0. This phenomenon is evidenced in this study that probiotic supplementation did not affect acid protease activity due to acidic pH ranges (1.5–2.0) after formation of functional stomach on day 38 in sea bream larvae (Suzer et al., 2007). Additionally, the mixture, composed of three probiotic bacteria Bacillus sp., Lactobacillus sp. and Saccharomyces cerevisiae were provided by iso-nitrogenous and iso-caloric diets in rohu (Labeo rohita) fingerlings. It is reported that the fish fed combination of three probiotics at equal proportion presented significantly higher growth, protein efficiency ratio, nutrient retention and digestive enzyme activities over other treatment groups (Mohapatra et al., 2012). These results are parallel with this study. Furthermore, similar results were recorded in grass carp, Ctenopharyngodon idella, juveniles and B. subtilis was provided as probiotic in different concentrations. Although, there were no significant differences in both growth parameters and feed conversion ratio as similar as in this study, it is interestingly recorded that digestive enzyme activities did not increase after long-term feeding with B. subtilis (56 days), but was still higher than that of control fish (Wu et al., 2012). It is thought that it could be related with not efficiently colonization of B. subtilis in fish gut during the experiments. Also, the other reason might be evaluated that it is better to supplement not only one probiant but also mixtures of Bacillus spores (more than 3 species) by the diet. It is clearly thought that supplementation of probiotics effectively improve the digestive process in larvae of S. aurata by relatively increase on beneficial microorganisms and their microbial enzyme activity, establishment of microbial balance and enhance on the digestibility and absorption of food and feed utilization along the intestine.

In conclusion, this is the first study to examine the supplementation of Bacillus sp. probiotics and also its effects on husbandry parameters and digestive enzyme activities in S. aurata larvae. It is clearly estimated that administration of probiotic by live food (rotifer), could be resulted in relatively higher growth parameters, feed efficiency and also significant improvement in digestive alkaline protease activity. Further studies should be conducted on effects of Bacillus spp. as probiotic supplementation by both live food and/or in water on specific immune response, disease resistance and other biochemical parameters in cultured fish species.

Acknowledgments
This study was funded by Ege University, Scientific Research Project, 11–SUF–014. The authors extend their gratitude to the staff of the Kılıç Sea Products Inc., Ören hatchery, Milas, MUĞLA, TURKEY, where the experiments were conducted for their invaluable technical assistance during the experiments. Also, the authors gratefully acknowledge Nektar Yem Corp. for the kind supply of probiotics.

References

