Biometric relation between asteriscus otolith size and fish total length of seven Cyprinid fish species from inland waters of Turkey

Nesrin Emre

1 Akdeniz University, Department of Science Education, Faculty of Education, Antalya, Turkey

Article History
Received 05 September 2018
Accepted 13 February 2019
First Online 14 February 2019

Abstract
The relationships between asteriscus otolith morphology (OL, OW, OR and OM) and fish total length were described with a non-linear function (power model) for seven Cyprinid fish species: C. angorae, C. antalyensis, C. caelestis, C. erhani, C. pestai, Pseudophoxinus antalyae and P. fahrettini. These species are endemic to Turkey and have limited distributions. The regression models are quite well fitted with all asteriscus otolith measurements. We were also conducted the regression models for genus level. There was no significant difference between the size of the left and right otoliths (paired t-test) in any of the seven species. This is the first study that examines the relationships between asteriscus otolith morphology and fish total length for four Cyprinid species. These results showed that the equations generated to obtain the fish size using otolith morphology data can be used in dietary studies.

Introduction
Otoliths have a characteristic shape which is highly species specific and also differs widely between species (Maisey, 1987). The size of fish prey and their importance in the diet can partly be estimated from the otoliths (Nielsen, Methven & Kristensen, 2010). By applying a relationship between the otolith morphology and fish length, it is possible to predict the fish size (Echeverria, 1987; Gamboa, 1991). Recently, researchers have shown an increased interest in the use of otoliths for calculating the fish sizes (Altin & Ayyildiz, 2014a; Ayyildiz, Ozen & Altin, 2014b; Ayyildiz, Ozen & Altin, 2015; Echeverria, 1987; Emre et al., 2016; Emre, Ayyildiz, Ozen & Yaşıcı, 2014; Kumar, Nikki, Oxona, Hashim & Sudhakar, 2017; Templeman & Squires, 1956). Otoliths may also assist to identify fossil fish species for paleontological studies (Nolf, 1995).

Asteriscus otoliths are the most preferred otoliths because they are the largest of the three pairs of otoliths in bony fishes which members of the Cypriniformes (Hecht, 1977). The age and growth of these species have been studied from Menzelet Reservoir (Ayyildiz, Emre,
Ozen & Yagci, 2014), Firınaz Stream (Emre, Ayyıldız, Ozen & Yağcı, 2014) and a small river entering the Eğirdir Lake (Emre et al., 2016) by using asteriscus otoliths.

The main purpose of this study is to determine the relationships between asteriscus otolith morphology (length, width, radius and mass) and fish total length based on allometric power equation for 7 Cyprinid fish species from inland waters of Turkey. This paper also investigates the usefulness of relationships between otolith morphology and total length for every genus. Part of the aim of this paper is to provide first biometric data for the future studies on food habits for 7 Cyprinid fish species.

Materials and Methods

Samplings were performed seasonally in the Beyşehir Lake (Konya), Eğirdir Lake (İsparta), Aksu River (Kahramanmaraş), Alara River (Antalya), Göksu River (Mersin) and Menzelet Reservoir (Kahramanmaraş) from August 2011 through May 2013. Fish samples were collected by using gill nets and electrofishing devices. In the laboratory, 1233 specimens of each species were measured to the nearest 1 mm for total length (TL) and with a digital balance with precision to 0.01 g for total weight. Then asteriscus otoliths were extracted and placed in eppendorf tube. After a while, the length (OL), width (OW), radius (OR) and mass (OM) of the asteriscus otoliths were measured by using QCapture Pro2 imaging software (vers. 5.1; QImaging, Surrey, Canada) with an accuracy of 0.001 mm.

The distance between the anterior and posterior otolith edge was defined as OL, and the distance from the dorsal to the ventral edge of the asteriscus otolith was defined as OW. OR is the longest axis between the core and posterior edge. OM were measured with an analytical balance with precision to 0.0001 g.

Otolith sizes (OL, OW, OR, and OM) between right and left otoliths were compared with a paired t-test.

The relationships between fish total length (TL) and asteriscus otolith sizes (OL, OW, OR and OM) are adjusted through described by (Huxley, 1924; Huxley, 1932). An alternative method was performed, for the possibility of erosion of the otolith in the stomach of the piscivorous, by using the allometric power equation at genus level.

Results

For each species, the size of the sample, minimum and maximum lengths and the mean values of TL, OL, OW, OR and OM were recorded and summarized in Table 1. There were no significant differences between the morphometric measurements of the right and left asteriscus otoliths (paired t-test, N = 30, P > 0.05). Therefore, only one otolith was randomly selected for further analysis. Biometric relationships between OL, OW, OR and OM with fish total length are summarized in Table 2. Regression analyses showed that otolith sizes (OL, OW, OR and OM) and fish total length were highly correlated.

The coefficients of determination (R^2) ranged from 0.760 to 0.979 in all cases. The lowest correlation coefficient was found in relations between TL-OM (R^2= 0.760) for C. angorae and TL-OR (R^2= 0.790) for P. fahrettini, while the highest correlation coefficient was calculated for the relations between TL-OW (R^2= 0.979) for C. pestai. Regression coefficients of asteriscus otolith sizes to fish total length were larger than 0.9 in 19 cases and between 0.8 and 0.9 in 7 cases (Table 2).
Our study provides the first relationships between OL, OW, OR and OM with fish total length for *C. antalyensis*, *C. caelestis*, *P. antalyae* and *P. fahrettini*. We also have described the regression within a genus level (Table 3). The lowest correlation coefficient was found in relations between TL-OM ($R^2 = 0.703$), while the highest correlation coefficient was calculated for the relations between TL-OL ($R^2 = 0.979$) for *Capoeta* genus. The best fit for the all relationships were recorded for *Capoeta* ($R^2=0.934$, $R^2=0.931$ and $R^2=0.891$, respectively), except TL-OM relations ($R^2=0.703$) compared to the *Pseudophoxinus* genus.

Discussion

Little information is available on the otolith morphology of Cyprinid fishes from Turkish inland waters. In this study the relationships between OL, OW, OR and OM with fish total length for *C. antalyensis*, *C. caelestis*, *P. antalyae* and *P. fahrettini* were examined for the first time (Table 1). These results provide a baseline reference for trophic studies for identification of prey and the estimation of its size.

Somatic growth rates of fishes have significant effects on the otolith growth (Munk, 2012). One of the most useful methods for predicting fish size in the stomachs of predators is the relationships between otolith size and fish size. With these relationships, it is possible to identify fish species and to determine their sizes. In the present study, our results showed a percentage of explained deviance higher than 75% for all regressions. Otolith morphometric measurements with the genus regressions were used successfully by Giménez, Manjabacas, Tuset & Lombarte (2016) when species identification is not possible. The findings of the current study are consistent with Giménez, Manjabacas, Tuset & Lombarte (2016) and the estimation of the regression within a genus level provided variances above 70%.

Previous studies focused mainly on the relationship between otolith dimensions OL and OW and fish size (Harvey et al., 2000; Battaglia et al., 2010; Jawad et al., 2011; Jawad and Al-Mamry, 2012). This study provides additional information by considering four otolith measurements (OL, OW, LR, and SR). In many cases the tip or the dorsal or ventral edges of an otolith might be damaged, making it difficult to measure OL or OW accurately (Battaglia et al., 2010; Jawad et al., 2011); this could influence the reliability of subsequent calculations. Presenting the four models (L-OL, L-OV, L-LR, and L-SR) for each species helps mitigate this potential problem. Previous studies focused mainly on the relationship between otolith dimensions OL and OW and fish size (Harvey et al., 2000; Battaglia et al., 2010; Jawad et al., 2011; Jawad and Al-Mamry, 2012). This study provides additional information by considering four otolith measurements (OL, OW, LR, and SR). In many cases the tip or the dorsal or ventral edges of an otolith might be damaged, making it difficult to measure OL or OW accurately (Battaglia et al., 2010; Jawad et al., 2011); this could influence the reliability of subsequent calculations. Presenting the four models (L-OL, L-OV, L-LR, and L-SR) for each species helps mitigate this potential problem. Previous studies focused mostly on the relationship between otolith length and width with fish length (Ayyildiz & Altin, 2018; Battaglia, Malara, Romeo & Andaloro, 2010; Harvey, Loughlin, Perez & Oxman, 2000; Jawad, Al-Mamry & Al-Busaidi, 2011). The present study provides additional information by considering four otolith measurements (OL, OW, OR, and OM). It is more reliable to calculate more than one equation. In many cases otolith might be damaged, and it might be difficult determine fish size from the otolith size (Battaglia, Malara, Romeo & Andaloro, 2010; Jawad, Al-Mamry & Al-Busaidi, 2011; Jawad, Park, Kwak & Ligas,
2017). Presenting the four equations (TL-OL, TL-OW, TL-OR, and TL-OM) for each species provides some support for the solution of this potential problem.

In conclusion, the present study makes several contributions to the biometric relationships between asteriscus otolith morphometric measurements and fish total length for Cyprinid fishes caught on the Turkish inland waters. This research will contribute towards future dietary studies as well as for palaeontological studies and population dynamics in the region.

References

Templeman, W., & Squires, H.J. (1956). Relationship of otolith lengths and weights in the haddock Melanogrammus aeglefinus (L) to the rate of growth of the fish. Journal
of the Fisheries Research Board of Canada, 13(4), 467-487. 10.1139/f56-029
Table 1. Size ranges in 7 Cyprinid species from inland waters of Turkey. N; Sample size, OL; otolith length, OW; width, OR; radius, and OM; mass.

<table>
<thead>
<tr>
<th>Species</th>
<th>Total Length</th>
<th>OL</th>
<th>OW</th>
<th>OR</th>
<th>OM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Min x Mea</td>
<td>N</td>
<td>Min x Mea</td>
<td>N</td>
</tr>
<tr>
<td>Capoeta angoreae</td>
<td>8</td>
<td>7.5-18.0</td>
<td>4</td>
<td>1.40-2.60</td>
<td>0.41</td>
</tr>
<tr>
<td>Capoeta antalyensis*</td>
<td>2</td>
<td>7.1-14.8</td>
<td>6</td>
<td>1.31-1.99</td>
<td>0.65</td>
</tr>
<tr>
<td>Capoeta caelestis*</td>
<td>15</td>
<td>4.4-6.3</td>
<td>6</td>
<td>2.31-2.75</td>
<td>0.48</td>
</tr>
<tr>
<td>Capoeta erhani</td>
<td>15</td>
<td>15.0-4.3</td>
<td>5</td>
<td>1.25-2.62</td>
<td>0.66</td>
</tr>
<tr>
<td>Capoeta pestai</td>
<td>4</td>
<td>6.2-8.7</td>
<td>4</td>
<td>3.6-5.4</td>
<td>0.36</td>
</tr>
<tr>
<td>Pseudophoxinus antalyae*</td>
<td>34</td>
<td>16.7-3.2</td>
<td>16.8-1.89</td>
<td>0.49</td>
<td>0.49-1.56</td>
</tr>
<tr>
<td>Pseudophoxinus fahrettini*</td>
<td>4</td>
<td>2.8-7</td>
<td>7</td>
<td>3.2-4</td>
<td>2.84</td>
</tr>
</tbody>
</table>

* No previous data for the relationships between OL, OW, OR and OM with fish length.
Table 2. Regression parameters of the relationships between otolith dimensions and fish total length for 7 Cyprinid species from inland waters of Turkey. Sample size (N) and coefficients of determination (R^2) given along with power equations.

<table>
<thead>
<tr>
<th>Species</th>
<th>N</th>
<th>TL-OL Equation</th>
<th>R^2</th>
<th>TL-OW Equation</th>
<th>R^2</th>
<th>TL-OR Equation</th>
<th>R^2</th>
<th>TL-OM Equation</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capoeta angoreae</td>
<td>178</td>
<td>$O_L = 0.3411T_L^{0.6975}$</td>
<td>0.858</td>
<td>$O_W = 0.3477T_L^{0.6308}$</td>
<td>0.858</td>
<td>$O_R = 0.039T_L^{1.1899}$</td>
<td>0.951</td>
<td>$O_M = 1E-05T_L^{1.8248}$</td>
<td>0.760</td>
</tr>
<tr>
<td>Capoeta antalyensis*</td>
<td>112</td>
<td>$O_L = 0.3107T_L^{0.7106}$</td>
<td>0.947</td>
<td>$O_W = 0.1895T_L^{0.8253}$</td>
<td>0.961</td>
<td>$O_R = 0.1366T_L^{0.7725}$</td>
<td>0.937</td>
<td>$O_M = 1E-05T_L^{1.6617}$</td>
<td>0.930</td>
</tr>
<tr>
<td>Capoeta caelestis*</td>
<td>159</td>
<td>$O_L = 0.2902T_L^{0.7497}$</td>
<td>0.968</td>
<td>$O_W = 0.2946T_L^{0.6722}$</td>
<td>0.953</td>
<td>$O_R = 0.1417T_L^{0.7751}$</td>
<td>0.938</td>
<td>$O_M = 6E-06T_L^{1.9572}$</td>
<td>0.919</td>
</tr>
<tr>
<td>Capoeta erhani</td>
<td>135</td>
<td>$O_L = 0.5167T_L^{0.5865}$</td>
<td>0.908</td>
<td>$O_W = 0.4341T_L^{0.5593}$</td>
<td>0.922</td>
<td>$O_R = 0.1467T_L^{0.7164}$</td>
<td>0.968</td>
<td>$O_M = 6E-06T_L^{2.0748}$</td>
<td>0.851</td>
</tr>
<tr>
<td>Capoeta pestai</td>
<td>154</td>
<td>$O_L = 0.3069T_L^{0.7712}$</td>
<td>0.965</td>
<td>$O_W = 0.3T_L^{0.6988}$</td>
<td>0.979</td>
<td>$O_R = 0.132T_L^{1.8106}$</td>
<td>0.958</td>
<td>$O_M = 2E-06T_L^{2.055}$</td>
<td>0.905</td>
</tr>
<tr>
<td>Pseudophoxinus antalyae*</td>
<td>344</td>
<td>$O_L = 0.2231T_L^{0.8997}$</td>
<td>0.957</td>
<td>$O_W = 0.2036T_L^{0.8558}$</td>
<td>0.956</td>
<td>$O_R = 0.109T_L^{0.9056}$</td>
<td>0.948</td>
<td>$O_M = 6E-06T_L^{2.3595}$</td>
<td>0.870</td>
</tr>
<tr>
<td>Pseudophoxinus fahrettini*</td>
<td>151</td>
<td>$O_L = 0.2441T_L^{0.8265}$</td>
<td>0.825</td>
<td>$O_W = 0.1731T_L^{0.9461}$</td>
<td>0.892</td>
<td>$O_R = 0.1494T_L^{0.7506}$</td>
<td>0.790</td>
<td>$O_M = 1E-05T_L^{2.0025}$</td>
<td>0.883</td>
</tr>
</tbody>
</table>

*No previous data for the relationships between otolith morphometrics and fish length.
Table 3. Regression parameters of the relationships between otolith dimensions and fish total length for 2 genus from inland waters of Turkey. Sample size (N) and coefficients of determination (R²) given along with power equations.

<table>
<thead>
<tr>
<th>Genus</th>
<th>N</th>
<th>TL-OL Equation</th>
<th>R²</th>
<th>TL-OW Equation</th>
<th>R²</th>
<th>TL-OR Equation</th>
<th>R²</th>
<th>TL-OM Equation</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capoeta</td>
<td>738</td>
<td>OL = 0.3019TL^{0.7426}</td>
<td>0.934</td>
<td>OW = 0.2757TL^{0.7076}</td>
<td>0.931</td>
<td>OR = 0.1283TL^{0.7964}</td>
<td>0.891</td>
<td>OM = 5E-05TL^{1.3011}</td>
<td>0.703</td>
</tr>
<tr>
<td>Pseudophoxinus</td>
<td>495</td>
<td>OL = 0.261TL^{0.8121}</td>
<td>0.882</td>
<td>OW = 0.1771TL^{0.9302}</td>
<td>0.929</td>
<td>OR = 0.1348TL^{0.7983}</td>
<td>0.881</td>
<td>OM = 1E-05TL^{2.0025}</td>
<td>0.883</td>
</tr>
</tbody>
</table>