The Food and Feeding Habits of Goldsilk Seabream, *Acanthopagrus berda* (Forsskal, 1775)

Shilta Madathampady Thomas¹,**, Narinder Kumar Chadha², Suresh Babu Padinhate Purayil³, Asokan Pillaru Kandiyil¹, Vinod Kavungal¹, Imelda Joseph⁴, Paramita Banjee Sawant², Ramya Abhijith¹

¹ICAR Calicut Research Centre of Central Marine Fisheries Research Institute, Calicut -673 005, Kerala, India.
²ICAR Central Institute of Fisheries Education, Mumbai- 400 061, Maharastra, India.
³ICAR Karwar Research Centre of Central Marine Fisheries Research Institute, Karwar, Karnataka, India.
⁴ICAR Central Marine Fisheries Research Institute, Kochi -682 018, Kerala, India.

Article History
Received 27 January 2018
Accepted 06 July 2018
First Online 11 July 2018

Corresponding Author
Tel.: 09747718948
E-mail: shiltathomas@gmail.com

Keywords
Acanthopagrus berda
Feeding habit
Gastro-somatic index
India

Abstract
The feeding habits of Picnic seabream, *Acanthopagrus berda* (Forsskal, 1775) from estuarine waters of Calicut, southwest coast of India was investigated. The study was conducted by collecting thirty fishes monthly from January 2016 to December 2016. The highest value of gastro-somatic index was obtained in January (2.65±2.31) and lowest in October (0.12±0.31) with an annual average of 0.64 ± 1.07. The highest level of vacuity index was observed in October (70.17 ± 4.71) and the lowest in June (6.00 ± 2.71). The results of gastro-somatic index and vacuity index revealed that feeding activity of A. berda is reduced during the spawning season. Barnacles, crab and bivalves are the major food items found in the stomach of A. berda which altered according to season and size of fish. The Index of relative importance (%) was 26.65 for barnacles, 24.96 for crabs, 21.56 for *Modiolus* spp and 14.87 for oyster. The secondary food items ingested were clam (mainly *Paphia* sp. and *Meretrix* sp. (5.04)) green mussel (*Perna viridis* (4.46)) and shrimp (1.96). The other smaller proportion of food items ingested include fish, aquatic plants and squid. The average relative length of gut was 1.11 ± 0.11cm showing that A. berda is omnivorous.

Introduction
Food is one of the key factors that greatly influence the distribution, growth, reproduction, migration rate and behavior of organisms (Priyadharsini, Manoharan, Varadharajan, & Subramaniyan, 2012). The quality and quantity of food directly affect fish growth while indirectly affect its maturation and survival (Sourinejad, Nikkhah Khaje Ataei, Kamrani, & Ghodrati Shojaei, 2015). Information on the food and feeding habit of fish in their natural habitat provide cues for the selection of suitable cultivable species and for the development of their successful farming practices (Manon & Hossain, 2011).

Research on food habits and feeding ecology of fishes are the basis to understand their roles within the ecosystems (Hajisamaea, Choua, & Ibrahim, 2003). In addition, the knowledge of the feeding behavior of marine fishes is essential for fish stock assessment, ecosystem modeling and to assess the role of marine fishes within an ecosystem (Bachok, 2004; Salavatian, Gholiev, Aliev, & Abassi, 2011; Mohanraj & Prabhu, 2012); prey selection (Stergiou & Fourtouni, 1991), predator-prey size relationships (Scharf, Juanes, & Rountree, 2000; Priyadharsini et al., 2012; Mohanraj & Prabhu, 2012), distribution of feeding habits with latitude (Pauly, 2000) and habitat selection (Labropoulou & Smith, 1999).

Sparidae, commonly known as porgies or sea bream, belonging to the Order Perciformes is a predominantly marine, widely distributed along the Indian, Pacific and Atlantic oceans (Nelson, 1994; Sheaves, 2006). The family sparidae contains many species of commercial, recreational and aquaculture...
importance (Ingram, McKinnon, & Gooley, 2002; Oh, Kim, Kwon, & Maran, 2013; Mongile et al., 2014). Among various seabeams, *Acanthopagrus* spp. are considered as commercially important fish foods for aquaculture throughout several regions of the world such as China, South-east Asia, Africa, UK and USA (Rahim, Abbas, Ferrando, Gallus, & Ghaffar, 2017).

Goldseam seabream, *Acanthopagrus berda* (Forsskål, 1775), twobar sebeam, *A. bifasciatus* (Forsskål, 1775) and yellowfin sebeam, *A. latus* (Hottuny, 1782) are the only representatives of the *Acanthopagrus* genus found in Indian Ocean (Behera, Loveson, Ghosh, & Krishna, 2013). These three species are commercially important and are cultured in various parts of the world. *Acanthopagrus latus* is cultured commercially in Japan (Abol-Munafi & Umeda, 1994), Taiwan (Leu & Chou, 1996), Kuwait (Abou-seedo, Dadzie, & Al-Kanaan, 2003) and Persian gulf (Vahabnezhad, Kaymaram, Taghavi Motlagh, Valinassab, & Fatemi, 2016); *A. berda* is cultured in Hongkong (Mok, 1985) and Pakistan (Rahim et al., 2017) and *A. bifasciatus* is cultured in Saudi Arabia (Hassan, Osman, Aswathan, Al–Shwared, & Fita, 2015).

A. berda is a fairly small euryhaline, estuary-dependent sea bream (van der Elst, 1988; Leu & Chou, 1996) with a wide distribution throughout the tropical Indo-West Pacific region (Garratt, 1993b; Nelson, 1994), occurring from South Africa to India and extending to Japan, the East Indies and northern Australia (Iwatsuki & Heemstra, 2010) at a depth range of about 50 m (Randall, 1995). *A. berda*, commonly known as the river bream or the goldsilk sea bream is a marine fish native to the Indian Ocean and is distributed along the estuarine and shallow coastal waters of Kerala, Tamil Nadu, Andhra Pradesh, Maharashtra and Gujarat coasts. They are locally exploited by artisanal fisheries both in cast net and hook & line along the Indian coasts (Fischer & Bianchi, 1984) and are sold in the markets @ Rs. 400-500/ kg. *A. berda*, the only reported acanthopagrus species in estuaries of Calicut waters (Shilta et al., 2018) due to its high quality meat (Rahim et al., 2017), is extremely popular with consumers as protein source of their food.

A. berda is an important sparid fish in fisheries and aquaculture (Abbas & Siddiqui, 2013) because of its recreational value (James, Mann, Beckley, & Govender, 2003), excellent meat quality, market place acceptance, high economic value (Anonymous, 2012), strong resistance to diseases, easy adaptability to captivity (Rahim et al., 2017), ability to tolerate wide variations in both salinity and temperature and fast growth rate (Sarwat, 2014).

Sparids typically consume a wide range of benthic prey and occasionally a substantial amount of plant material (Nasir, 2000; Sarre, Platell, & Potter, 2000; Mariani, Macaroni, Massa, Rampacci, & Tancioni, 2002; Tancioni et al., 2003 and Platell, Ang, Hesp, & Potter, 2007). Though Fischer et al. (1990) reported that *A. berda* feed mainly on echinoderms, worms, crustaceans and mollusks, no literature data is available on the food and feeding of *A. berda* from Indian waters.

An understanding of the feeding biology is not only a basic requirement for fisheries management in the study area, but also would be useful for its captive breeding and culture practices. In this back drop, the present study was undertaken to examine the feeding habits and natural diet composition of goldsilk sebeam in relation to size and spawning season in the tropical Indian waters so that the findings can be applied in aquaculture development of this species.

Materials and Methods

Study Area and Sampling Regime

A. berda was sampled monthly from Korapuzha estuary of Calicut district, Kerala, India during January 2016 till December 2016. The site was located in rocky areas outside the creeks, at depths less than 5 m and within 50 m from the shore. The fishes were caught by cast net fishing. The total length and the standard length of the fish were measured to the nearest 0.1 cm and the total body weight and gonad weight to the nearest 0.1 g using a measuring board and a sensitive weighing balance respectively.

Gastro-Somatic Index (GaSI)

The specimens collected were properly cleaned in the laboratory, dissected and the stomachs were removed. The total weight of the stomach with its contents was measured to the nearest 0.01 g. The contents of stomach and foregut were examined under a microscope and further identification within each taxonomic group was done following appropriate taxonomic identification guides. GaSI based on monthly and seasonal calculation was obtained as described by Biswas (1993):

\[
\text{GaSI} = \frac{\text{Total weight of stomach}}{\text{Bodyweight}} \times 100.
\]

Index of Relative Importance (IRI)

Stomachs of *A. berda* samples collected are removed by cutting above the cardiac sphincter (oesophagus) and below the pyloric sphincter (large intestine). An incision was made along the longitudinal axis and the contents of stomachs were emptied onto a 500 μm mesh sieve for rinsing and sorting. Contents were blotted dry on paper towels before counts, displaced volumes in 1 L graduated cylinder. IRI for all prey items combined was calculated according to, Pinkas, Oliphant, and Iverson (1971), following the formula
IRI = (%N\textsubscript{i} + %V\textsubscript{i})%O\textsubscript{i}

Where N\textsubscript{i}, V\textsubscript{i}, and O\textsubscript{i} represent percentages of number, volume and frequency of occurrence of prey \textsubscript{i} respectively.

Vacuity Index (VI)

Vacuity Index or the stomach emptiness index determines the amount of fish appetite for food. VI was calculated using the equation given by Euzen (1987):

\[VI = \left(\frac{\text{The number of empty stomachs}}{\text{total number of the stomachs examined}} \right) \times 100. \]

The interpretation of the obtained VI is determined under the following conditions (Euzen, 1987). If 0≤VI<20, the logical conclusion is that the fish is gluttonous, 20≤VI<40, the fish is comparatively gluttonous, 40≤VI<60, fish is middle alimentary, 60≤VI<80, fish is comparatively hypoalimentative, 80≤VI<100, fish is hypoalimentative. Each gut was examined and its fullness estimated visually on a scale of 0 (empty) to 20 (100% full).

Food Preference index (FP)

After dissecting the stomach, all the food items were sorted out and identified. To analyze the composition of the stomach and determine the food preference index, percentage frequency of occurrence was obtained through the following equation described by Chrisfi, Kaspiris, and Katselis (2007):

\[FP = \left(\frac{\text{number of stomachs with a specific food item}}{\text{the number of non-empty stomachs}} \right) \times 100. \]

The different values of this index, allow separation of the prey items into three categories: If FP >50%, the prey eaten is dominant and the main diet. If 50%> FP >10%, the prey eaten is secondary. If FP<10%, the prey is eaten accidentally (Euzen, 1987).

Variations In Diet Composition In Relation to Fish Size

In earlier studies it is reported that the majority of A. berda in the length class 100-149 mm were classified macroscopically as immature (Garratt, 1993a) and 22 cm total length is the size at which 50% of A. berda mature (Wallace, 1975). Based on this, in the present study the fishes are grouped into three categories, <15 cm, 15-22 cm and > 22cm and randomly 60 fishes are collected from each category to study the variation in diet composition between small, medium and adult fishes.

Statistical Analysis

Statistical differences in monthly GaSI were tested by analysis of variance (ANOVA), while Tukey’s test was performed at the significance level of a = 0.05 (Zar, 2010).

Results

Feeding Intensity of A. berda

From the total 360 fishes examined, 138 males and 167 females were separated; 35 individuals were immature and 20 were intersex individuals. The size of fish ranged from 24.05±4.48 cm (in January) to 28.30±4.33 cm (in May) in total length and from 313.50±236.42 g (in March) to 486.65±285.45 g (in November) in weight (Table 1). Out of 360 stomachs of A. berda examined, 68.90% contained food and the rest 31.09% were without food, which varied during different months. Among these, 58 were full, 115 were ¾ full, 69 were ½ full, 39 were ¼ full and 79 were empty. The highest percentage of empty stomach was in the month of October (70%) and the lowest percentage of empty stomach was in the month of June (2%). The highest percentage of full stomachs was found in the month of June (98%) and the lowest percentage of full stomachs was found in October (30%) (Table 1).

Annual and Monthly Variation in Diet Composition

Barnacle, crab, oyster and Modiolus spp. formed the major food groups of A. berda. Barnacles made up of 71.98% by volume composition, whereas crab (71.69%) was in the second position of importance. Oyster (58.32%) comes in third position which was mainly composed of Crassostrea madrasensis. Modiolus spp. contributed 50.46% to the total food items. The secondary food items were shrimp constituting 25.53%, followed by clam (21.80%) including Paphia spp. and Meretrix sp., and green mussel (15.49%). Other accidental food items consumed by A. berda were fish (7.72%), aquatic plants (2.31%) and squid (1.54%) (Table 2). The oyster, Crassostrea spp. were found in the diet during March to October; Modiolus spp. during January-June; shrimp during June-December. Green mussel dominated the diet during November and clam during December (Table 2).
Variations in Diet Composition in Relation to Fish Size

Small size-classes (<15 cm) mainly consume Modiolus spp., while oyster and barnacle preys are dominant in medium size specimens (15-22 cm TL). Adults (>22 cm) tended to consume diverse range of prey species, comprising mostly of crab followed by barnacle and oyster (Table 3).

Seasonal Occurrence of Different Food Items and Food Preference Index

During the study period, in autumn, the fish preferred crab (26.09%) and barnacle (26.09%). During winter, the fish ingested bivalve (36.53%) and crab (21.15%). During summer, the fish preferred feeding on barnacle and Modiolus spp. (9.57%), shrimp (8.81%), mussel (8.30%), clam (6.44%), fish (3.93%), squid (0.69%) and aquatic plants (1.19%) (Table 4).

Index of Relative Importance

IRI values for barnacles (772) and crab (723) were higher than IRI values for other prey items such as Modiolus Spp. (625), Crassostrea Spp. (431), Clam (146), Perna viridis (129), Shrimp (57), Fish (14), Squid (0.27), Seaweed (0.06) (Table 4).

Table 1. Season and feeding activity of A. berda (based on percentage of fullness and emptiness)

<table>
<thead>
<tr>
<th>Months</th>
<th>Number of fishes examined</th>
<th>Total length (cm) (Mean ± SD)</th>
<th>Total weight (g) (Mean ± SD)</th>
<th>% of fullness*</th>
<th>% of emptiness*</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>30</td>
<td>24.05 ± 4.48</td>
<td>338.03 ± 275.10</td>
<td>83.33</td>
<td>16.66</td>
</tr>
<tr>
<td>February</td>
<td>30</td>
<td>25.01 ± 4.05</td>
<td>364.41 ± 218.03</td>
<td>82.14</td>
<td>17.85</td>
</tr>
<tr>
<td>March</td>
<td>30</td>
<td>24.11 ± 5.65</td>
<td>313.50 ± 236.42</td>
<td>88.88</td>
<td>11.11</td>
</tr>
<tr>
<td>April</td>
<td>30</td>
<td>26.01 ± 4.15</td>
<td>384.41 ± 208.03</td>
<td>85.01</td>
<td>14.99</td>
</tr>
<tr>
<td>May</td>
<td>30</td>
<td>28.30 ± 4.33</td>
<td>482.79 ± 248.96</td>
<td>91.66</td>
<td>8.33</td>
</tr>
<tr>
<td>June</td>
<td>30</td>
<td>26.16 ± 5.50</td>
<td>430.86 ± 341.96</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>July</td>
<td>30</td>
<td>26.75 ± 4.68</td>
<td>411.26 ± 239.87</td>
<td>87.5</td>
<td>12.5</td>
</tr>
<tr>
<td>August</td>
<td>30</td>
<td>25.91 ± 5.70</td>
<td>400.39 ± 345.70</td>
<td>63.63</td>
<td>36.36</td>
</tr>
<tr>
<td>September</td>
<td>30</td>
<td>28.12 ± 4.63</td>
<td>454.17 ± 256.59</td>
<td>66.66</td>
<td>33.33</td>
</tr>
<tr>
<td>October</td>
<td>30</td>
<td>26.19 ± 4.29</td>
<td>398.44 ± 207.46</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>November</td>
<td>30</td>
<td>27.57 ± 4.83</td>
<td>486.65 ± 285.45</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>December</td>
<td>30</td>
<td>26.37 ± 5.20</td>
<td>427.00 ± 301.91</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>68.90</td>
<td>31.09</td>
</tr>
</tbody>
</table>

*N. B: Fullness includes full, ¾ full and ½ full stomachs. Emptiness includes ¼ full and empty stomachs

Table 2. Monthly variations in diet composition of A. berda from India during the period from January to December 2016

<table>
<thead>
<tr>
<th>Months</th>
<th>Primary feed</th>
<th>Secondary feed</th>
<th>Tertiary feed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Barnacle</td>
<td>Crab</td>
<td>Oyster</td>
</tr>
<tr>
<td>Jan</td>
<td>15.02</td>
<td>22.7</td>
<td>A</td>
</tr>
<tr>
<td>Feb</td>
<td>6.25</td>
<td>25</td>
<td>A</td>
</tr>
<tr>
<td>Mar</td>
<td>33.33</td>
<td>22.22</td>
<td>11.11</td>
</tr>
<tr>
<td>Apr</td>
<td>28.5</td>
<td>25.72</td>
<td>32.78</td>
</tr>
<tr>
<td>May</td>
<td>20</td>
<td>28</td>
<td>50</td>
</tr>
<tr>
<td>Jun</td>
<td>6</td>
<td>32.33</td>
<td>40</td>
</tr>
<tr>
<td>July</td>
<td>31.25</td>
<td>31.25</td>
<td>18.75</td>
</tr>
<tr>
<td>Aug</td>
<td>16.66</td>
<td>5.55</td>
<td>22.22</td>
</tr>
<tr>
<td>Sept</td>
<td>44.44</td>
<td>3</td>
<td>10.11</td>
</tr>
<tr>
<td>Oct</td>
<td>33.33</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Nov</td>
<td>16.66</td>
<td>33.33</td>
<td>A</td>
</tr>
<tr>
<td>Dec</td>
<td>7.69</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>Total</td>
<td>259.13</td>
<td>258.1</td>
<td>209.97</td>
</tr>
<tr>
<td>FPI (%)</td>
<td>71.98</td>
<td>71.69</td>
<td>58.32</td>
</tr>
</tbody>
</table>

*Remarks: data expressed as percentage, (A) = Absence of food in the gut, FPI-Food preference index
Gastro-Somatic Index (GaSI) and Vacuity Index (VI)

The GaSI of *A. berda* had the highest value in the month of January (2.65±2.31) and the lowest in October (0.12±0.31). The maximum value of GaSI was found in summer (1.32±0.33) and its minimum in autumn (0.14±0.39) (Table 6). The annual average of GaSI was 0.64 ± 1.07. The highest level of VI was observed in October (70.17 ± 4.71) and the lowest in June (6.00 ± 2.71). The annual average VI was 28.54 ± 19.8. The highest level of VI was observed in autumn (55.83) and the lowest level of VI was found in summer (8.33) (Table 5). Annual average of vacuity index was 34.66 ± 21.5 exhibiting that *A. berda* was comparatively gluttonous.

Relationship between the Total Length and Length of the Alimentary Canal

The alimentary canal length (29.42±1.22 cm) of *A. berda* was more than the total length (27.01±0.76 cm) (Table 6). The ratio of total length and alimentary canal length was 1: 1.09. The average relative length of gut was 1.11 ± 0.11.

Discussion

The food and feeding habits of various sparid fishes have been studied by many authors (Hadj Taieb, Sley, Ghorgan, & Jarboui, 2013; El-Maremie & El-Mor, 2015). Sparids consume a wide range of benthic prey and occasionally substantial amounts of plant material (Tancioni et al., 2003; Platell et al., 2007). The present study indicates that the sparid, *A. berda* consumes a wide range of food items such as barnacles, crabs, oysters, *Modiolus* spp., shrimps, clams, mussels, fish, squid and aquatic plants which is similar to the feeding habits of other sparid members. The black bream, *A. butcheri* (Munro, 1949) is an opportunistic carnivore which feeds on shellfish, worms, crustaceans, small fish and algae (Holt, 1978; Sarre et al., 2000; Chuwen, 2009). Silver seabream, *Pagrus auratus* (Forster, 1801) was identified feeding on crustaceans, teleosts, echinoderms and molluscs (Ang, 2003; French, Platell, Clarke, & Potter, 2012). Adults of Gilt-head seabream *S. aurata* (Linnaeus, 1758) have diets comprising mostly molluscs, teleosts and crustaceans (Hadj Taieb et al., 2013).

The primary food items (50%> FP) observed in the diet of *A. berda* were barnacles, crabs, *Modiolus* spp. and oysters and the secondary food items (50%< FP >10%) were shrimp, clam and mussel. Fish, squid and aquatic plants occurred with FP indices of lower than 10, revealing that these items are not the major food items of this fish. Earlier studies also described similarly that the diet of *A. berda* has been wide, feeding on teleost, bottom invertebrates including worms, molluscs, crustaceans, echinoderms, small fishes and plant material (Beumer, 1978; Fischer & Bianchi, 1984; van der Elst, 1988; Fischer et al., 1990). Studies in Durban Bay (Day & Morgans, 1956) found that the diet of *A. berda* consisted of planktonic copepods,

Table 3. Variations in Diet Composition for three length categories of *A. Berda*

<table>
<thead>
<tr>
<th>Food Item</th>
<th><15 cm (n=60)</th>
<th>15-22 cm (n=60)</th>
<th>>22 cm (n=60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crab</td>
<td>7.89</td>
<td>17.24</td>
<td>25</td>
</tr>
<tr>
<td>Barnacle</td>
<td>21.05</td>
<td>20.68</td>
<td>19.82</td>
</tr>
<tr>
<td>Oyster</td>
<td>26.31</td>
<td>27.58</td>
<td>16.37</td>
</tr>
<tr>
<td>Clam</td>
<td>0</td>
<td>0</td>
<td>9.48</td>
</tr>
<tr>
<td>Shrimp</td>
<td>7.89</td>
<td>17.24</td>
<td>8.62</td>
</tr>
<tr>
<td>Mussel</td>
<td>5.26</td>
<td>3.44</td>
<td>7.75</td>
</tr>
<tr>
<td>Modiolus spp.</td>
<td>31.57</td>
<td>13.79</td>
<td>6.89</td>
</tr>
<tr>
<td>Fish</td>
<td>0</td>
<td>0</td>
<td>4.31</td>
</tr>
<tr>
<td>Squid</td>
<td>0</td>
<td>0</td>
<td>0.86</td>
</tr>
<tr>
<td>Aquatic plants</td>
<td>0</td>
<td>0</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Table 4. The average Food preference Index (FPI) and Index of Relative Importance (IRI) examined in *A. berda* from January-December 2016 (N =360)

<table>
<thead>
<tr>
<th>Prey Season</th>
<th>Crab</th>
<th>Barnacle</th>
<th>Modiolus spp.</th>
<th>Oyster</th>
<th>Clam</th>
<th>Mussel</th>
<th>Shrimp</th>
<th>Fish</th>
<th>Squid</th>
<th>Aquatic plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter FPI</td>
<td>21.15</td>
<td>15.38</td>
<td>36.53</td>
<td>3.85</td>
<td>13.46</td>
<td>3.85</td>
<td>1.92</td>
<td>3.85</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Summer FPI</td>
<td>33.33</td>
<td>5.13</td>
<td>2.56</td>
<td>41.02</td>
<td>2.56</td>
<td>2.56</td>
<td>10.26</td>
<td>2.56</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Monsoon FPI</td>
<td>13.95</td>
<td>27.91</td>
<td>0</td>
<td>18.6</td>
<td>9.3</td>
<td>4.65</td>
<td>13.95</td>
<td>9.3</td>
<td>2.32</td>
<td>0</td>
</tr>
<tr>
<td>Autumn FPI</td>
<td>26.09</td>
<td>26.09</td>
<td>0</td>
<td>13.04</td>
<td>0</td>
<td>21.73</td>
<td>8.69</td>
<td>0</td>
<td>0</td>
<td>4.35</td>
</tr>
<tr>
<td>Annual FPI</td>
<td>23.63</td>
<td>18.67</td>
<td>9.57</td>
<td>18.47</td>
<td>6.44</td>
<td>8.30</td>
<td>8.81</td>
<td>3.93</td>
<td>0.69</td>
<td>1.19</td>
</tr>
<tr>
<td>Annual IRI</td>
<td>723</td>
<td>772</td>
<td>625</td>
<td>431</td>
<td>146</td>
<td>129</td>
<td>57</td>
<td>14</td>
<td>0.27</td>
<td>0.06</td>
</tr>
<tr>
<td>IRI (%)</td>
<td>24.9</td>
<td>26.64</td>
<td>21.56</td>
<td>14.87</td>
<td>5.04</td>
<td>4.45</td>
<td>1.96</td>
<td>0.48</td>
<td>0.09</td>
<td>0.02</td>
</tr>
</tbody>
</table>
amphipods, polychaetes and bivalves.

The stomach food content of *A. berda* showed monthly and seasonal variations. It is reported that the food spectrum of fishes depends on various factors like prey abundance and habitat (marine, estuarine or mangrove), age of fish, prey energy content, prey size selection and changes in the composition of food organisms occurring at different seasons of the year (Cyrus & Blaber, 1983; Shalloof & Khalifa, 2009; Manon & Hossain, 2011; Hadji Taieb et al., 2013).

The crabs, oyster, barnacles and *Modiolus* spp. are available in plenty along Calicut waters all round the year to constitute the most important preys of this species (Rao, 1974). During autumn the fish preferred feeding crab and barnacle; whereas in winter, the fish ingested on bivalve and crab. In summer, the fish preferred feeding oysters and crabs and in monsoon season, the fish mainly feed on barnacles and oyster. The crab dominated the diet in all seasons and earlier reports shows that mud crabs are available in Korapuzha estuary throughout the year with a peak during December-June (Sarada, 1998).

Clam (*Meretrix* sp.) dominated the diet of *A. berda* during the month of December which coincided with the peak availability backwater clam, *Meretrix casta* during the month of December-January in Korapuzha estuary (Seshapa, 1967). The presence of mussel in the diet during June-August coincide with the reports by Venkataraman and Sreenivasan (1955) stating that the numbers of green mussel in Korapuzha estuary are low in January, but increase slightly in April, reach phenomenal figures in July immediately after the South-West monsoon.

The results of the present study also shows that feeding habits of *A. berda* changes considerably as fish grow. Small size-classes mainly consume *Modiolus* spp., while oyster and barnacle preys are dominant in medium size specimens. Adults tended to consume diverse range of prey species, comprising mostly of crab followed by barnacle and oyster. Beumer (1978) reported that smaller *A. berda* specimens, do not have well-developed molars but the foliaceous structure of their gill-rakers is efficient in retaining smaller food items whereas adult *A. berda* have sharp, pointed incisors which seize and retain food items, whilst broad, powerful molars crush the food. Therefore in the present study maturing juveniles mainly consumed soft shell bivalves; later undergo dentition changes to the characteristic molariform teeth that assist them in the consumption of hard shell of crab, barnacle and oyster. Differences in feeding structures, relative to fish length may therefore help reduce intraspecific competition between new recruits and growing juveniles of *A. berda* (Harrison, 1990).

The present result was justified with the previous reports stating that size-related change in diet was observed in juveniles, sub-adult and adult fish of *A. berda*. Day, Blaber and Wallace (1981) reported that the diet of juvenile *A. berda* (20-60 mm) is characterized by small prey like zooplankton, mainly amphipods, chironomid larvae, tanaids and small crabs, whereas sub-adults (60-120 mm) focus on feeding larger foods items mainly amphipods, bivalves, gastropods, gobies and weed. Harrison (1990) reported that fry and small juveniles of *A. berda* (< 30 mm S.L.) consumed amphipods, crustaceous remains, polychaetes, algal material, fish scales and ostracods. In Durban Bay, Day and Morgans (1956) found that the juveniles of *A. berda* (up to 100 mm) mainly feed on small size planktonic copepods, amphipods polychaetes and bivalves. The adult *A. berda* over 300 mm are observed feeding crabs in its diet (Tobin, Sheaves, & Malony, 1997; Sheaves & Malony, 2000).

Higher intensities of feeding activity of *A. berda* in summer could be related to temperature and maximal abundance of benthic organisms (Pallaro, Santic, & Jardas, 2003). Favourable environmental conditions, or the nutrient enrichment of coastal area, during the

Table 5. The average Gastro-somatic Index and Vacuity index examined in *A. berda* from January-December 2016 (*N* = 360)

<table>
<thead>
<tr>
<th>Month</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaSI</td>
<td>1.16±1.60</td>
<td>1.32±0.33</td>
<td>0.41±0.58</td>
<td>0.14±0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>41.66</td>
<td>8.33</td>
<td>43.66</td>
<td>55.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6: The mean Total length (TL) and Alimentary canal length (ACL) ratio of *A. Berda*

<table>
<thead>
<tr>
<th>No. of fish examined</th>
<th>Mean ACL (cm)</th>
<th>Mean TL (cm)</th>
<th>TL:ACL</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>27.02</td>
<td>26.76</td>
<td>1:1.009716</td>
</tr>
<tr>
<td>52</td>
<td>29.62</td>
<td>25.91</td>
<td>1:1.143188</td>
</tr>
<tr>
<td>55</td>
<td>30.31</td>
<td>28.12</td>
<td>1:1.077881</td>
</tr>
<tr>
<td>60</td>
<td>30.14</td>
<td>26.66</td>
<td>1:1.130533</td>
</tr>
<tr>
<td>58</td>
<td>30.03</td>
<td>27.58</td>
<td>1:1.088832</td>
</tr>
<tr>
<td>55</td>
<td>29.42±1.22</td>
<td>27.01±0.76</td>
<td>1:1.09</td>
</tr>
</tbody>
</table>
Feeding intensity in fishes is negatively related to the percentage of empty stomachs (Bowman & Bowman, 1980; Pallaro et al., 2003) and is synchronized with the spawning seasons (Manon & Hossain, 2011; Salavatian et al., 2011; Sourinejad et al., 2015). Studies on various fish species reported that feeding intensity of fishes increases before and after the reproductive period (Ozyurt, Mavruk, & Kıyığa, 2012; Wahabnezhad et al., 2016).

The highest level of vacuity index was observed in the month of October which coincided with the spawning season of A. berda. This may be due to the decreased feeding activity since the mature gonads take up more space in the peritoneal cavity, compressing the stomach and making feeding more difficult (Dadzie, Abou-Seedo, & Al-Qattan, 2000; Sourinejad et al., 2015). The annual cycle of A. berda from our observations indicates that the spawning season occur from August to December with peak spawning during October. Hadj Taieb et al. (2013) also reported that VI values increased during the spawning season of Sparus aurata in the Gulf of Gabes.

In the present study, the highest IRI and FPI is observed for crustaceans followed by bivalves. Beumer (1978) and Harrison (1990) also reported that crustaceans formed the major invertebrate component in the diet of A. berda whereas Sheaves and Malony (2000) reported the dominance of Bivalves > gastropods > polychaetes > sesarmids in the diet. Crabs contributed more than 50% dry weight to the diets of Epinephelus suillus, Gnathanodon speciosus, Lutjanus argentimaculatus and Toxotes chatareus which are mangrove associated fishes from the Embley Estuary in tropical Australia (Salini, Blaber, & Brewer, 1990; Sheaves & Malony, 2000). The same might apply to A. berda, an estuarine dependent seabream (Sheaves & Malony, 2000) and their diet might be opportunistic, flexible and alter the feeding ecology necessary for living in estuaries (Harrison, 1990).

From the results obtained there is a possibility of food chain with (1) the detritus base system of Odum and Headl (1975) (mangrove detritus + saprophytes + detritivores + lower consumer + higher consumer) and (2) two trophic interactions of Sheaves and Malony (2000) (mangrove leaves + crabs + fish) in the ecosystem. Since A. berda feed extensively on mangrove crabs, it may redirect part of the energy normally recycled by crabs directly into upper levels of estuarine food webs. Larger specimens of A. berda appear to become less piscivorous (4.31% of fish in the diet). The low rate of piscivory is also reported in estuarine phases of Lutjanus argentimaculatus, Epinephelus malabancus and E. coioides which has implications for theories relating to the nursery ground values of mangrove systems (Sheaves & Molony, 2000).

The average relative length of gut in A. berda is measured to be 1.11 ± 0.11 cm. Since this value is not much greater than 1, A. berda could be considered as an omnivore. Figueiredo, Morato, Barreiros, Afonso, & Santos (2005) reported that many sparids are omnivores in their feeding habit. Further the presence of diets of both animal (crabs, bivalves, barnacle, shrimp, squid) and plant origins (aquatic plants) in diet of A. berda confirms that the species is omnivorous.

The present study revealed that A. berda is an omnivore feeding mainly on crustaceans and bivalves. The feeding activity of A. berda altered according to season and size of fish and is high during pre-spawning and post-spawning seasons. The low incidence of piscivory in A. berda support to theories that reduced predation pressure may enhance the nursery ground value of tropical mangrove systems for fishes.

Acknowledgements

The authors are grateful to Dr. A. Gopalakrishnan, Director, ICAR-Central Marine Fisheries Research Institute, Kochi, India, for continuous encouragement and support for carrying out this study.

References

Ang, H.P. (2003). Comparisons of the diets of four species of spard on the central and lower west coast of Australia (Honours Thesis). School of Biological Sciences, Murdoch University, Perth, Western Australia.

University, Perth, Western Australia, 50 pp.

