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Abstract 
 

Generalized Additive Models (GAMs) are widely used statistical models for species 
distribution in habitat and environmental management modeling as they enable 
incorporation of non-linearity. The objective of this study is to develop relationships between 
habitat variables, fish absence/presence (logistic GAM) and abundance (Poisson GAM) for the 
S. rizeensis using on-site observations in Solaklı River. Logistic GAMs correctly predicted 
absence/presence of adult and juvenile S. rizeensis at 79.3% and 74% of sampling areas 
respectively. Response curves of logistic GAMs results show differences in probability of 
finding the adult and juvenile fish. Adult S. rizeensis were mostly found in higher velocities 
(0.5-0.8 m/s) than in juvenile fish (≈ 0 m/s). Also, the highest number of adult fish were 
recorded in deeper habitats (≈ 0.4 m) rather than in juvenile fish (≈ 0 m). Curves show adult 
fish are more independent to the presence of cover compared to juvenile fish. Velocity 
shelter and bedrock formation were the most common cover types. Chi-square test results of 
predicted values showed that developed Poisson GAMs of adult and juvenile S. rizeensis could 
not accurately represent fish abundance. The results show that while logistic GAM is 
applicable, Poisson GAM model is not applicable for the area. 

Introduction 
 

The Black Sea coast of Turkey is home to two trout 
species from Salmonidae family: Salmo coruhensis and 
Salmo rizeensis. Salmo rizeensis, which was previously 
reported as Salmo trutta labrax and Salmo trutta 
macrostigma respectively by Zengin and Aksungur 
(2008) and Verep et al. (2016), is an endemic freshwater 
trout species, which prefers highly elevated large river 
systems (Verep et al., 2016). On-site visits revealed that 
the population of freshwater trout in Solaklı Basin is 
declining due to stream channel modifications for 
various purposes. Maintaining a viable species 
population necessitate the collection of information 
about their habitat conditions to ensure favorable 
conditions. Population status of high-level organisms in 
the aquatic food chain such as S. rizeensis is an indicator 
of ecosystem health. For S. rizeensis, there is a lack of 
knowledge on its favorable micro-habitat conditions.  

Both biotic and abiotic habitat variables are 
important in long-term sustainability of the species. To 
date, several studies have focused on the effect of 
abiotic factors, including water depth, velocity and 

substrate composition on aquatic organism’s 
populations and distribution. Jacobson et al., (2015) 
investigated the link between river management and 
pallid sturgeon population dynamics for the Missouri 
River, USA emphasizing the importance of 
environmental variables such as flow and sediment 
regime on fish behavior and population at different life 
stages of the fish. Freeman, Bowen, Bovee and Irwin 
(2001) studied the effect of environmental variables and 
flow rate on juvenile fish abundance in Tallapoosa River. 
They found that the juvenile fish abundance is strongly 
related to habitat variables and flow rate. Abundance 
was more frequently correlated with persistence

1
 of 

shallow-water habitats than with habitat availability and 
value of flow extremes.  

Englund and Krupa (2000) studied the effect of 
water depth as an environmental variable, besides the 
biotic factors and predator presence on crayfish habitat 
use. They found that the water depth is a determinant 
factor in habitat use by small and large crayfish. Fox, 
Brien, Collas, and Nash (2000) modeled egg production 
patterns and egg density of three marine fish species in 
the Irish Sea using environmental variables. Location, 
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depth, time, depth-integrated sea-temperature and 
salinity were incorporated into the presence/absence 
and egg production models.  Grossman, Ratajczak, 
Crawford and Freeman (1998) classified the stream fish 
species in Coweeta Creek, North Carolina, USA based on 
environmental variables such as mean velocity, depth 
and substrate using statistical analysis. Hydrologic 
variation (annual flow variability) was noted as a key 
determinant, having a stronger impact than seasonal or 
annual cycles of habitat availability. 

Ecological models are widely used for modeling 
and analysis of habitat conditions of species to improve 
our understanding of the relationship between habitat 
variables and the species abundance or inhabit 
probability. To date, several species distribution models 
have been developed for this purpose. Two types of 
statistical models are more commonly applied to 
investigate the effect of habitat conditions on 
population status and dynamics: Generalized Linear 
Models (GLMs) and Generalized Additive Models 
(GAMs). GLMs, developed by Nelder and Baker (1972), 
are being used to predict the species’ response to 
different ecological variables. As environmental patterns 
are generally non-linear, linear models like GLMs falls 
short of describing ecological conditions (Yee & Mitchell, 
1991). However, there are examples of successful 
prediction using GLMs (Young, Iampietro, Kvitek, & 
Garza, 2010).  

To overcome the linearity assumption of GLMs, 
Generalized Additive Models (GAMs) were developed by 
Hastie and Tibshirani (1990). GAMs are effective models 
in establishing a relationship between predictor 
variables and the response. GAMs allow depiction of a 
wider range of response curves than GLMs.  

Comparison of ecological models show that GAMs 
have a higher performance or at least as well as other 
models such as MARS, CART and ANN (Moisen & 
Frescino, 2002; Walsh & Kleiber, 2001). As a more 
flexible model, GAMs are able to show nonlinear 
relationship between a group of predictor variables and 
a response, and estimate the response based on these 
non-parametric functions (Ahmadi-Nedushan et al., 
2006; T. Hastie & Tibshirani, 2010).  

GAMs have been widely used in ecological research 
such as forest biota and vegetation distribution 
modeling (Austin, 2002; Drexler & Ainsworth, 2013; 
Moisen et al., 2006; Yee & Mackenzie, 2002), marine 
fisheries (Bergstrom, Sundblad, Downie, Snickars, & 
Lindegarth, 2013; Denis, Lejeune, & Robin, 2002; Elith et 
al., 2006; França & Cabral, 2015), and freshwater 
fisheries (Alexander, 2016; Jowett, Parkyn, & 
Richardson, 2008; Leathwick, Elith, & Hastie, 2006). The 
results of ecological models such as GAMs can be crucial 
for decision making for environmental management. 

There are several GAMs distribution functions 
including commonly applied additive logistic regression 
(Binomial), log-additive model (Poisson), gamma and 
negative-binomial distributions (Yee & Mackenzie, 

2002). Logistic GAMs aim to discover the relationship 
between selected variables and binary response (i.e. 
absence/presence) whereas logarithmic (Poisson) GAMs 
establish the relationship between predictor variables 
and abundance of response variable. Logistic and 
logarithmic GAMs can be presented by Equations 1 and 
2, respectively (Hastie & Tibshirani, 2010).       
 

                                (1) 

 
                      (2) 

 
Where, μ is the mean of the response variable, α is 

a constant,  are regression coefficients and  are 

measured values for predictor variables.  
To improve our understanding of the relationships 

between environmental variables and species 
distribution, this paper presents results of GAMs 
development for the endemic S. rizeensis using data 
collected from the Haldizen (Uzungöl) branch of Solaklı 
Stream. The binomial and Poisson GAMs of adult and 
juvenile S. rizeensis were developed and compared for 
its accuracy in predicting species distribution.  

 

Methodology  
 
The Study Site 
 

Figure 1 presents the location of the sampling area 
located in the Northeastern part of Turkey. Data 
collection was carried out in Haldizen (Uzungöl) branch 
of the Solaklı River, which had a relatively higher 
abundance of trout than Karaçam branch. The 
mainstream, on the other hand, has largely been 
affected by the ongoing modifications of the stream 
bed, and untreated wastewater discharge from small-
scale nearby residential establishments and presence of 
multiple hydroelectric power plants.  

In addition to anthropogenic effects, because of 
the preference of  S. rizeensis of high elevations (Verep 
et al., 2016), it is normal to see low numbers of S. 
rizeensis in the mainstream, which has a much lower 
elevation than Öğene (Karaçam) and Haldizen (Uzungöl) 
branches.   

Sampling was carried out during medium annual 
flow rate of the stream in October of 2016. Two survey 
areas (each one about 300 meters in length) were 
selected for fish sampling on the stream.  

The most dominant habitat types of the stream 
were rapid and run while the least commonly observed 
habitat types were glide and pool. Cobble, boulder and 
sand were the most dominant substrate types. Velocity 
shelter and bedrock formation were the most common 
cover types. There is not a complex cover composition 
at the study area, due to the scarcity of other types of 
cover such as undercut boulder, log jam, root wad and 
aquatic vegetation.  
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Fish Sampling Method 
 

The research team included four people that were 
actively involved in on-site data collection. The group 
electro-fished randomly selected points (quadrates) 
using a backpack electro fishing set, in the daytime. 
One fisherman used the electro fishing machine 
(SAMUS725MS) and held the fishing net in the 
downstream of the sampling point. A biologist 
measured fish length, a hydrologist gauged the velocity 
and depth at the sampling point, another person 
recorded the measured values and fish abundance for 
each quadrate. To reduce the effect of water 
turbulence caused by researchers, sampling points 
were adjusted to 5-6 meter intervals. A total of 150 
sampling points was studied and the data on substrate 
composition, depth, mean velocity, distance to cover 
and the distance to the stream’s edge, whether any fish 
was captured or not were recorded.  
 
Determination of Sampling Point Characteristics 
 

Microhabitat variables were collected from 
quadrates of about 1 m

2
 in the area. In addition to the 

measurement of mean velocity (at 0.6 times of depth 

at each point or at 0.2 and 0.8 times of depth if the 
depth exceeds 1 m) and depth of quadrates, the 
percent of each substrate category in each quadrate 
were estimated visually following the criteria of Baker, 
Jowett, & Allibone (2003). The cover was classified 
according to  Bovee (1986). For each quadrate, the 
distance to the nearest cover and stream edge were 
recorded.  

The trout population was classified as juvenile and 
adult to eliminate the negative effect of possible 
differences in habitat selection behavior of juvenile and 
adult fish on GAM. The classification was based on the 
fish length. As reported by Zengin and Aksungur (2008) 
and Verep et al. (2016) in their studies of trout 
population in the same region, the minimum length of 
adolescence in S. rizeensis was 14 cm.  

According to the length distribution of the sample 
from a total of 150 quadrates (Figure 2), 72 fish in the 
sample belong to the juvenile group and 39 fish to the 
adult fish group. From the sampled 150 quadrates, 20% 
of quadrates were occupied by adult and 30.6% by 
juvenile fish. Verep et al. (2016) reported 250 mm as 
the maximum length of S. rizeensis. 
 
 

 
Figure 1. Sampling site location. 
 
 
 

 
Figure 2. Length distribution of the sample. 
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Development of GAM Models 
 

In this study, physical habitat variables and 
developed logistic and logarithmic GAMs for adult and 
juvenile S. rizeensis were added to the models step-by-
step. For all variables of Binomial and Poisson GAMs, 
the maximum df values were adjusted to 3. The cubic 
spline test was made to determine the non-linearity of 
model variables.  

Model development were performed by using 
HSC development module of SEFA program (System for 
Environmental Flow Assessment) version 1.2 build 30 
(Aquatic Habitat Analysts, 2012).  
 
The Sample Size  
 

Accuracy of ecological models are sensitive to 
sample size (Cumming, 2000; Hernandez, Graham, 
Master, & Albert, 2006; Kadmon, Farber, & Danin, 
2003; McPHERSON, JETZ, & Rogers, 2004; Stockwell & 
Peterson, 2002). Development of ecological models 
with low samples may result in unrepresented 
response (Carroll & Pearson, 1998; Pearce & Ferrier, 
2000). There is also evidence that small, but adequate 
size of the sample does not affect model prediction 
performance. For example, Elith et al. (2006) did not 
find the evidence of sample size effect on GAM model 
prediction. They concluded that this finding may be 
related to the existence of adequate sampling points. 
According to Wisz et al. (2008), a sample size of 100 is 
adequate.  

Our model is based on data collected in 150 
points. 111 fish were captured at sampling points 
during the on-site study which meets an acceptable 
number of sample size. Partially homogeneous 
distribution of substrate structure, depth and habitat 
types along the stream and random sampling method 
reduce effects of probable sampling bias. 
 

Results 
 
Results of Logistic GAM 
 

Table 1 presents logistic GAMs results for adult 
and juvenile fish. All variables used in the final GAM 
(last row on the left side) of adult fish (velocity, depth, 
substrate index, edge location and distance to cover) 
had a statistically significant effect on the model 
(P<0.05). The non-linearity test shows that the only 
statistically significant non-linear variable in adult fish 
logistic GAM is the depth (Table 2), with an optimum 
value of about 0.4 m (Figure 3).  

The same variables for adult fish were used for 
developing logistic GAM of the juvenile fish group 
(Table 1). Edge location did not have a statistically 
significant effect on model, so it was not included in 
the final model (last row on the right side of Table 1). 
Also, the non-linearity test did not show a statistical 
significance for any of the variables (Table 2). The 
stepwise decreasing trend in residual deviance value at 
both adult and juvenile fish logistic GAMs in Table 1 
shows the positive effects of variables on model 

Table 1. Logistic generalized additive models of adult and juvenile S. rizeensis 

 
Binomial 
model 
variables 

Test for overall significance of adult fish 
logistic GAM 

Binomial model 
variables 

Test for overall significance of juvenile 
fish logistic GAM 

Res. Dev.** Res. df P Res. Dev. Res. df P 

V* 145.62 146.14 0.2 V 171.11 146.07 0.01 
V-D 136.15 143.5 0.02 V-D 166.25 143.21 0.01 
V-D-Si 129.87 140.71 0.01 V-D-Si 162.24 140.29 0.02 
V-D-Si-El 122.91 137.88 0.00 V-D-Si-Cd 158.29 137.56 0.03 
V-D-Si-El-Cd 120.38 134.94 0.01     
* V: Velocity, D: Depth, Si: Substrate index, El: Edge location and Cd: Distance to cover 
** Residual deviance 
 
 

Table 2. Non-linearity test (cubic spline) results of logistic GAMs for adult and juvenile fish 

 
Adult fish Juvenile fish 

Variable F P Variable F P 

V* 0.96 0.38 V 1.07 0.34 
D 6.11 0.00 D 0.37 0.67 
Si 1.04 0.35 Si 1.02 0.36 
El 0.59 0.55 Cd 1.05 0.34 
Cd 1.32 0.27 

   * V: Velocity, D: Depth, Si: Substrate index, El: Edge location and Cd: Distance to cover 
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prediction. 
Depth had the largest effect on fish presence of 

adult fish GAM response curves. According to the 
models result presented in Table 1, incorporation of 
depth to the model improved the model confidence 
level (from P=0.2 to P=0.02). As the distance of a 
location from the edge of the stream increases (> 1 m), 
the probability of finding the adult fish gradually 
decreases. The logistic regression model correctly 
predicted absence-presence of adult fish at 79.3% of 
sampling areas (Cohen’s kappa= 0.43 at 0.3 cut-off 
level) (Table 3). 

For juvenile fish, velocity and depth were the 
most determinant micro-habitat variables affecting 
logistic GAM (P value=0.01) (Table 1). Logistic 
regression model correctly predicted absence-presence 
of juvenile fish at 74.0% of sampling areas (Cohen’s 
kappa= 0.30 at 0.5 cutoff level).  

There are differences in GAM response curves of 
juvenile and adult fish (Figure 3 and Figure 4). While 
the juvenile fish-finding probability decreases as the 
depth increase, there is a non-linear relationship 
between fish finding probability and increase in depth 
for adult fish. This indicates that the probability of adult 
fish finding increased as the depth increased up to 
about a depth of 0.4 m. Increase in the model 

significance level (P value) with incorporation of the 
depth to the model confirms the importance of depth 
in the model (Table 1). 

Juvenile fish logistic GAM results show that the 
optimum velocity for juvenile fish is zero (Figure 4). The 
sharp drop in finding probability curve related to 
velocity reveals the importance of this variable for 
juvenile fish. Contrarily, the adult fish presence 
increases moderately as velocity increases up to 
velocities of 0.5-0.8 m/s (Figure 3).  

The distance to cover curves of adult and juvenile 
fish showed different patterns. As the distance to cover 
increases (> 1 m) juvenile fish finding probability 
decreases, but there is an increase in adult fish finding 
probability as the distance to cover increases (up to 
about 2.5 m), as seen in Figure 3 and Figure 4 Also, as 
the substrate index value increases (at substrate index 
> 5), adult and juvenile fish finding probability 
decreases. 
 
Results of Poisson GAM 
 

In addition to logistic GAM, Poisson GAMs were 
developed as a fish abundance prediction model. 
Variables incorporated in the model included velocity, 
depth, substrate index, edge location and distance to 

 
Figure 3. Response curves of variables of logistic GAM for adult S. rizeensis. 
 
 
 
Table 3. Estimate of adult and juvenile fish absence/presence 
 

 Cutoff level Cohen's kappa Correct% 

Adult fish 0.3 0.43 79.3 
Juvenile fish 0.5 0.30 74.0 
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cover and fish abundance (Table 4) for adult and 
juvenile fish. 

Similar to adult fish logistic GAM, depth is the only 
statistically significant non-linear variable in adult 
Poisson GAM (Table 5), with an optimum value of 
about 0.4 m (Figure 5). The probability of finding adult 
fish increased as the velocity increased up to 0.7 m/s. 
Also, as the distance to cover increased (> 1 m) the 
probability of finding adult fish decreased.  

Similar variables were used in juvenile fish Poisson 

GAM development. Velocity is a statistically significant 
non-linear variable. 

The finding probability of juvenile fish decreases 
with an increase in velocity (Figure 6). As most of the 
juvenile fish were present in more stagnant water 
(velocity near zero), there is a sharp decline in the 
probability of fish finding curve with an increase in 
velocity. Also, the optimum value of depth for juvenile 
fish is about 0.3-0.4 m. Similar to logistic GAM, the 
probability of juvenile fish finding decreases as the 

 
Figure 4. Response curves of variables contributed in the logistic GAM of juvenile S. rizeensis 
 
 
 
Table 4. Poisson generalized additive models of adult and juvenile S. rizeensis 
 

Poisson model 
variables 

Test for overall significance of adult 
fish Poisson GAM 

Poisson model 
variables 

Test for overall significance of juvenile 
fish Poisson GAM 

Res. Dev. Res. df P Res. Dev. Res. df P 

V 97.71 115.95 0.02 V 120.21 116.08 0.00 
V-D 87.4 113.23 0.00 V-D 117.8 113.06 0.00 
V-D-Si   80.19 110.36 0.00 V-D-Si 113.97 110.07 0.00 
V-D-Si-El 77.72 107.56 0.00 V-D-Si-El 110.16 107.32 0.00 
V-D-Si-El-Cd 74.85 104.71 0.00 V-D-Si-El-Cd 104.91 104.58 0.00 

 
 
 
Table 5. Non-linearity test (cubic spline) results of Poisson GAMs for adult and juvenile fish 
 

Adult fish Juvenile fish 

Variable F P Variable F 

V 2.50 0.09 V 3.33 
D 9.02 0.00 D 0.81 
Si 0.87 0.42 Si 2.02 
El 0.81 0.44 El 1.65 
Cd 0.91 0.40 Cd 1.93 
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distance to cover increases.  
Despite the overall abundance prediction value of 

the models being close to observed values 
(approximately, 25% error for the adult Poisson model 
and 11% error for the juvenile Poisson model), both 
Poisson models over-predicted the fish abundance at 
unoccupied quadrates and under-predicted the 
abundance at occupied quadrates (Figure 7). Hence, 
Poisson GAM is not suitable for estimating abundance. 

Chi-square test results showed that the X
2
 value of the 

models (58.07 and 59.56 for adult and juvenile fish 
Poisson models respectively) were much higher than 
the maximum acceptable value (40.11, at α= 0.05).  

Contour plots of adult and juvenile fish 
occurrence with respect to depth and velocity are 
presented in Figure 8. The contour plot shows the 
velocity and depth interactions’ effect on the fish 
presence, aforementioned above.   

 
Figure 5. Response curves of variables contributed in the Poisson GAM of adult S. rizeensis. 
 
 
 

 

Figure 6. Response curves of variables contributed in the Poisson GAM of juvenile S. rizeensis 
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Discussion 
 

Logistic GAMs correctly predict the 
absence/presence of adult and juvenile fish at 79.3% 
and 74% of quadrate respectively (Table 3). The higher 
accuracy of juvenile fish logistic GAM than that of adult 
fish is related to the larger sample size of juvenile fish. 
In general, logistic and Poisson models show that 
hydraulic variables (depth and velocity) are 
determinant factors in predicting both adult and 
juvenile fish presence. 

Velocity curves of adult and juvenile trout shows 
that the adult fish can better tolerate the physical 
stress of higher velocities compared to the juvenile fish. 
Logistic GAMs showed that the adult fish prefer deeper 
habitats than the juvenile fish.  

Depth, substrate index and edge location have a 
positive effect on adult fish logistic GAM, as seen by 
decreasing P value of the model (Table 1). As the water 
depth gradually increases as the distance to the river 
edge increases due to river bed topography of the 

sampling area, we can assume that the distance to the 
edge is directly related to depth. Hence, the depth is 
the most important variable of adult fish logistic GAM.  

Studies in different regions that also develop 
bivariate and multivariate models approve the 
controlling role of depth as a hydraulic variable (Ayllon, 
Almodovar, Nicola, & Elvira, 2009; Vismara, Azzellino, 
Bosi, Crosa, & Gentili, 2001). Munoz-Mas et al. (2016) 
study results on Salmo farioides showed that the large 
fish prefer low velocity and deep parts. The pool 
sections of the river are where the large fish could be 
found. Similar results were reported for large brown 
trout by Bovee (1978).  

Supporting the findings of the study, the 
difference in water depth selection patterns between 
adult and juvenile fish was also reported by Ayllon et 
al. (2009). Their findings showed that as fish body sizes 
of trout species increase, they tend to select deeper 
and slower flowing sections of the stream. Selection of 
shallower areas by small size fish could be related to 
habitat competition between large and small fish.  

 
Figure 7. Comparison between observed and predicted abundance of adult (left) and juvenile (right) S. rizeensis (X and Y axis 
indicate fish abundance). 
 
 
 

 
Figure 8. Contour plots of adult (left) and juvenile (right) fish abundance using depth and velocity (filled and blank dots indicate 
occupied and unoccupied quadrates, respectively) 
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Because the study area is located in a 
mountainous region, the stream velocity is relatively 
high, except the shallow parts in the river bank and 
there are a few pools. Also, there are rare amounts of 
cover elements such as instream vegetation, undercut 
banks and log jams in the stream. Adult fish can only 
use water turbulence and depth, which has higher 
velocity, as cover elements due to these habitat 
characteristics. Deeper areas provide a form of 
overhead cover for fish (Benndorf, 1989; Bovee et al., 
1998).  

The preference of shallow waters by juvenile fish 
is also related to its higher motivation for foraging 
(Ayllon et al., 2009). The juvenile fish uses shallow 
parts of the stream which usually have low velocities to 
minimize energy consumption due to swimming. Low 
velocity enhances food deposition and therefore 
increases food availability. The optimum value of 
velocity for juvenile trout abundance is about zero, 
which is in agreement with findings of Munoz-Mas et 
al. (2016) and Jowett et al. (2008).  

As mentioned in the methodology section, there 
is not a complex cover structure in the study area. 
About 75% of covers in the sampling areas are velocity 
shelters. Presence of velocity shelter is a more 
important determinant for juvenile fish compared to 
adult fish. Juvenile fish cannot tolerate high velocities. 
The need for the presence of velocity shelters for 
energy preservation for growth of juvenile trout has 
been emphasized in several studies (Fausch, 1984; 
Hughes & Dill, 1990).  

Our model supports the need for the presence of 
cover for juvenile fish. Model results show that the 
juvenile S. rizeensis prefer cobble and gravel 
substrates. Similar results have been reported for small 
and medium trout in literature (Ayllon et al., 2009; 
Bovee, 1978). Decrease in adult fish finding probability 
by increase in substrate index is in contrast with 
previous studies on trout species (Ayllon et al., 2009; 
Bovee, 1978; Munoz-Mas et al., 2016). 

Chi-square test result shows Poisson GAMs of 
adult and juvenile fish could not correctly predict the 
fish abundance at quadrates, although there are 
similarities between logistic and Poisson GAMs curves. 
As there is no change in significance level (P value) of 
the Poisson GAMs prediction by addition of more 
variables in subsets (Table 4), it can be inferred that the 
models were unable to explain the statistical 
significance difference between the variables. It is likely 
that low population of fish is the major cause of lack of 
sufficient accuracy of Poisson models. 

The close similarity between velocity, depth and 
substrate index curves of logistic and Poisson GAMs of 
adult fish is associated with low frequency of adult fish 
in each quadrate (mostly equal to 1). In other words, 
abundance data is very close to binomial 
(absence/presence) data.   
 

Conclusion 
 

Habitat plays an important role on species 
population (Love, Schroeder, Lenarz, & Cochrane, 
2006). The low population of S. rizeensis in the studied 
area necessitates taking protective actions, including 
habitat modification strategies by respective regulatory 
agencies. The lack of knowledge on habitat conditions 
and preferences of aquatic organisms can lead to 
misapplications that can negatively affect population 
dynamics. Channelizing of a river, for example, is one of 
the most commonly encountered misapplications. As 
channelization of a river has many habitat implications 
such as decrease in food productivity, limiting pool 
areas, increase in water velocity and elimination of 
natural covers in the river body, resulting in an overall 
decrease in area suitable for fish and decreases growth 
and survival conditions (Jacobson et al., 2015; Jowett et 
al., 2008; Pretty et al., 2003). Several correct habitat 
improvement actions may be taken (Jacobson et al., 
2015; Kondratieff & Richer, 2014; Santos, Arau, & 
Brotto, 2008), among which include:  

 
1. change in river width and flow 

management; which is strongly related to stream 
morphology,  

2. increase in cover number by deploying 
artificial structures, and  

3. excavation of pools.  
 
In order to establish effective regulatory 

mechanisms, a reliable overview of favorable habitat 
conditions of each species is needed. Using habitat 
based ecological models selection and design of 
conservation areas or re-evaluation of existing areas 
can be made (Love et al., 2006; Pittman, Christensen, 
Caldow, Menza, & Monaco, 2007). Although some of 
these models are not able to represent habitat needs 
of all species inhabiting a specific area, they can be 
developed for ecologically and/or economically 
valuable species (Lindeman, Pugliese, Waugh, & Ault, 
2000). GAMs have proved their ability of disclosing 
non-linear relationship patterns between variables and 
response, with their great flexibility (Venables & 
Dichmont, 2004).  

Further studies may focus on interactions such as 
food availability and velocity. Availability of food has a 
controlling role in fish habitat selection. Analyses of the 
food content of each quarter may prove to be 
challenging, but it may improve the prediction accuracy 
of the model. 
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