RESEARCH PAPER

Turkish Journal of FISHERIES and AQUATIC SCIENCES

Isolation and Bioactivities Screening of Turkish *Microcosmus* vulgaris

Belma Konuklugil^{1,*}, Melek Sertdemir², Hajar Heydari¹, Aslı Koc³

¹Ankara University, Faculty of Pharmacy, Pharmacognosy Department, Ankara, Turkey.
 ²Ankara University, Biotechnology Institute, Basic Biotechnology, Ankara, Turkey.
 ³Ankara University, Faculty of Pharmacy, Biochemistry Department, Ankara, Turkey.

Article History Received 28 January 2018 Accepted 02 April 2018 First Online 05 April 2018

Corresponding Author Tel.: +90.312 2033092 E-mail: belma.konuklugil@gmail.com

Keywords Bioactivity Marine natural products Microcosmus vulgaris Tunicate

Abstract

During the course of our investigation for isolation of biological active compounds from marine organisms of the Turkish seas, secondary metabolites and bioactivities of, Microcosmus vulgaris collected from (Turkish coasts) İzmir coast was studied. In the study 5 α - 6 α - epoxyergosta 7-en- 3 β - ol was isolated from Microcosmus vulgaris. Furthermore, antioxidant and antiproliferative activity of crude extract and 5 α - 6 α epoxyergosta 7-en- 3 β - ol were determined by DPPH, superoxide radical scavenging and nitric oxide radical scavenging and MTT assay respectively. Antimicrobial activity of crude extract was also determined against some Gram positive, Gram negative and yeast strains. Stearic acid, palmitic acid and myristic acid were also detected by GC-MASS analysis. This is the first study about isolation and bioactivity determination of Turkish M. vulgaris.

Introduction

Oceans are a unique source of natural products with wide range of bioactivity. For this purpose, numerous secondary metabolites have been isolated and some of them are used as pharmaceuticals, cosmetics, nutritional supplements, molecular probes and fine chemicals (Kijjoa and Sawangwong, 2004). Isolation of natural products from marine organisms is a new trend in the world and especially in Turkey. In recent years, many new pharmacological active metabolites have been explored from the marine organisms (Martins et al., 2014). Tunicates are marine invertebrate animals divided into three main groups as sessile ascidians, pelagic appendicularians and thaliaceans. They are rich sources of secondary metabolites with biofuels and pharmaceutical potential. Didemnin B, patellamide D, patellazole C which isolated from tunicate were shown unique mechanisms of action against diverse targets and against cancer-relevant cell lines (~100 pM) (Schmidt *et al.,* 2012; Mehbub *et al.,* 2014, Raslan *et al.,* 2017).

Trabectedin is an alkaloid and it is antitumor substance of Yondelis[®] which is isolated from a tunicate *Ecteinascidia turbinata*. Aplidin[®] and Lurbinectedin 173 are compounds isolated from *Aplidium albicans* and *Ecteinascidia turbinata* that are still in Phase III and Phase II studies for cancer treatment (Kim, 2012; Mehbub *et al.*, 2014).

Steroids, terpenoids, carotenoids and a significant number of acetogenins, macrocyclic lactones, polyethers, cyclic peroxides, and simple alkyl sulfates are found mainly in tunicate. Different modified peptides and depsipeptide, sometimes different types of amino acids are nitrogenous metabolites that are found in tunicate. Heterocyclic alkaloids include pyridoacridines, tryptophan-derived alkaloids, alkaloids derived from phenylalanine and tyrosine, and lysinederived alkaloids. Non-nitrogenous secondary metabolites are less in number (Menna *et al.*, 2012). Ascididemnin from *Didemnum sp.* (Kobayashi *et al.*, 1988), Aplidin from *Aplidium albicans* (Cooper *et al.*, 2012) and Didemnin B from *Trididemnum solidum* (Chun *et al.*, 1986; Cooper *et al.*, 2012) are cytotoxic active secondary metabolites with marine origin. Trabectedin (Yondelis) which is currently used as an antitumor drug for soft tissue sarcomas is isolated from *Ecteinascidia turbinate* (Patel, 2011) Vitilevuamit is also a natural product which has antitumor activity and is isolated from *Didemnum cuculiferum* and *Polysyncranton lithostrotum* (Edler, *et al.*, 2002; Fojo, 2008).

Turkey, is surrounded by Black Sea, Aegean Sea and Mediterranean Sea. Despite of its long coastal line there have been limited works on marine bioactive compounds.

About 61 tunicate species are living in Turkey's coasts, but there are not any studies about secondary metabolites and bioactivity of these species (Çinar, 2014; Konuklugil, 2016). In this study, secondary metabolites and antioxidant, antiproliferative activities of *M. vulgaris* collected from Aegean Sea were investigated.

Materials and Methods

General

1,1-Diphenyl-2-picryl-hydrazyl (DPPH), quercetin, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-

terazoliumbromide (MTT), sulfanilamide and napthylethylenediamine dihydrochloride were purchased from Sigma Aldrich. McCoy's 5A medium, fetal bovine serum (FBS), streptomycin and glutamine were from PAA (PAsching, Austaria), HCT 116 colon cancer cells were kindly provided by Bert Vogelstein.Molecular devices Spectra MAX 190 Microplate Reader helps to get absorbance. GC-MS, GC-Focus PolarisQ, Thermo Fisher Scientific was used.

Preparation of Extracts

M. vulgaris belongs to Microcosmus genus, Pyuridae family. *M. vulgaris* was collected by scubadiving from İzmir, Agean Sea and was identified by Dr. Gözcelioğlu. A voucher specimen was deposited at the Pharmacognosy Department of Faculty of Pharmacy, Ankara University. The sample was cut to small pieces and then extracted by choloform-methanol (1:1) three times. The extract was dried under vacuum (40 g) and kept at 4°C until its use.

Isolation and Identification of 5 α - 6 α - Epoxyergosta 7- En- 3 β - Ol

The crude extract of *M.vulgaris* was partitioned between methanol:water (90:10) and n-hexan, ethyl acetate, n- butanol respectively.

n- Butanol fraction was applied to vacuum liquid chromatography (VLC). Totally four fractions were obtained. First fraction was selected for isolation of secondary metabolites. Silica and Sephadex column chromatography was used for further purification. Obtained compound (white amorphous) was washed with methanol several times then was dissolved in chloroform and sent to NMR (Nuclear Magnetic Resonance). The structures of the compounds were identified by ¹H and ¹³C NMR.

GC_MASS Analysis

Fatty acid analysis was performed in the other three VLC fractions, using a GC-MS on an ion trap mass spectrometer equipped with Electron ionization source (70 eV) (Polaris Q; ThermoScientific) coupled with a ThermoScientific GC system. The GC conditions were as follows: 5% phenyl column (Trace TR-5, 30 m × 0.25 mm × 0.25 μ m; ThermoScientific) oven temperature program: the column held initially at 60 °C for 3 min after injection, then increased to 60 °C for 3 min, followed by a 4 °C min⁻¹ gradient up to 165 °C, then 1 °C min⁻¹ up to 180 °C, and, finally, 35 °C min⁻¹ up to 310 °C, holding for 5 min. carrier gas: helium. Samples were directly injected (2 μ L) in split (1:10) mode, with a blink window of 3 min, inlet temperature of 210 °C, transfer line set at 250 °C, and ion source temperature of 230 °C.

DPPH Antioxidant Activity Determination

Different concentrations of crude extract and 5α - 6α - epoxyergosta 7-en- 3β - ol were prepared and added to equal volume of DPPH solution which was prepared freshly in methanol (0.1 mM). After 30 min at room temperature, the absorbance was recorded at 517 nm. quercetin was used as as standard (Shirwaikar *et al.,* 2006). Radical scavenging activity was calculated by the following formula:

Inhibition%= [(Absorbance control- Absorbance sample)/ Absorbance control]×100

Superoxide Radical Scavenging Activity by Alkaline DMSO Method (SO)

Superoxide radical scavenging activity of the crude extract and 5α - 6α - epoxyergosta 7-en- 3β - ol were determined by alkaline DMSO method. To 1 mL of alkaline DMSO (5 mM NaOH in 0.1 mL water) 10 µL of NBT (1 mg/mL) and 30 µL of different concentration of extracts or standard compounds were added. DMSO was added to the reaction mixture to give a final volume of 140 µL. The absorbance was measured at 560 nm using microplate reader (Harput *et al.*, 2011). Radical scavenging activity was calculated by the following formula:

Inhibition%= [(Absorbance control- Absorbance sample)/ Absorbance control]×100

The IC₅₀ were obtained through extrapolation from regression analysis. The antioxidant activity was evaluated based on this IC₅₀ value.

Nitric Oxide Radical Scavenging Activity (NO)

NO radical scavenging activity of the crude extract and 5α - 6α - epoxyergosta 7-en- 3β - ol were determined. Brifley, 60 µL of sodium nitroprusside (10 mM) dissolved in phosphate buffered saline were added to 60 µL of serial diluted extracts and was incubated under light at room temperature for 150 min. Finally, an equal volume of Griess reagent (1% sulfanilamide, 0.1% napthylethylenediamine dihydrochloride, 2.5% H₃PO₄) was added into each well in order to measure the nitrite content. After10 minutes, absorbance was measured at 577 nm in a microplate reader (Senthil Kumar et al., 2012)

Radical scavenging activity was calculated by the following formula:

Inhibition%= [(Absorbance control- Absorbance sample)/ Absorbance control]×100

Antiproliferative Activity

Effect of *M. vulgaris* crud extract and 5α - 6α epoxyergosta 7-en- 3β - ol on cell viability of HCT 116 colon cancer cell line was determined by MTT assay.

HCT 116 cells were incubated with extracts for 48h, then cell viability was analyzed using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) Assay. Insoluble formazan cyrstals were dissolved by adding DMSO to the wells. The absorbance (550nm) was measured with spectrophotometer. Untreated cells were used as negative control. Cell viability was calculated as relative to control. Docetaxel was used as a positive control. Untreated cells were used as a negative control (C). Data are shown as mean ± SD of three independent experiments.

Antimicrobial Activity

Antibacterial activity tests were carried out against Acinetobacter haemolyticus (ATCC 19002). Acinetobacter septicum (NRB 239), Klebsiella pneumoniae (CDC 529), Staphylococcus aureus (JCSC 4744), Staphylococcus epidermidis (ATCC 35984), Candida glabrata (ATCC 90030), Cryptococcus neoformans (NIH 68) and Cryptococcus gattii (NIH 112) strains. Antimicrobial activity was determined by a modified microdilution method as described in CLSI M07-A9 standard for bacteria and CLSI M27-A3 standard for yeasts. 8,9 The tested two fold serial dilutions of the extracts were between 256 and 0.5 µg mL⁻¹. and were incubated at 35°C for 24 for bacteria and 48 hours for veasts. Minimum concentration of the extract that completely inhibited macroscopic growth of the microorganism was accepted as minimum inhibitory concentration.

Results

In this study *M. vulgaris* was selected to isolate secondary metabolites. According to NMR results 5α - 6α - epoxyergosta 7-en- 3β - ol was isolated from methanol and chloroform extract. The structure 5α - 6α -epoxyergosta 7-en- 3β - ol and its ¹H and ¹³C NMR data were presented in Figure 1, Table 1 and 2 respectively. Antioxidant activity of *M. vulgaris* and 5α - 6α -epoxyergosta 7-en- 3β - ol were determined by DPPH, SO and NO assays. According to the results 5α - 6α -epoxyergosta 7-en- 3β - ol has shown higher antioxidant activity than methanolic extract of *M. vugaris*. Quercetin was used as standard in these assays. Results are presented in Table 3.

M. vulgaris decreased cell viability of HCT 116 cell line significantly (P<0.05). And IC50 value of *M. vulgaris* is 0.724833 ± 0.0387 mg/ml. But IC50 value of 5 α - 6 α epoxyergosta 7-en- 3 β - ol is > 1mg/ml. Docetaxel was used as standard in this assay. Results are presented in Table 4.

According to the GC-MASS results, palmitic acid was the major fatty acid in three Butanol fractions. The results are presented in Table 5.

 CH_3

Figure 1. Structure of 5α - 6α - epoxyergosta 7-en- 3β - ol.

Table 1.¹H NMR data for 5α - 6α - epoxyergosta 7-en- 3β - ol

NO	δς	
H- 1,2,3,4,9,11,12,14,15,16,17	1.30-2.29	
M (21-H)		
5	-	
6	3.5	
M (1-H)		
7	5.14- 5.36	
M (1-H)		
8	-	
10	-	
13	-	
18	0.69	
M (3-H)		
19, 24	1.00-1.13	
M (4-H)		
20	-	
21,22,23,26,27,28	0.81-0.95	
25	1.58	

Table 2. ¹³C NMR data for 5α - 6α - epoxyergosta 7-en- 3β - ol

NO	δς	
1	35.47 t	
2	30.9 t	
3	56.79 d	
4	39.52 t	
5	71.81 s	
6	73.39 d	
7	121.69 d	
8	140.77 s	
9	42.17 d	
10	37.27 s	
11	23.83 t	
12	39.3 t	
13	50.32 s	
14	54.40 d	
15	22.1 t	
16	140.77 s	
17	28.0 t	
18	56.19 d	
19	11.85 q	
20	18.9 q	
21	36.52 q	
22	18.72 q	
23	35.78 t	
24	30.7 t	
25	39.1 d	
26	31.56 d	
27	20.2 q	
28	21.27 q	

Antimicrobial activity of crude extract was tested against Gram positive, Gram negative and yeast strains. According to the results presented in Table 6, the crude extract has shown significant activity against *Staphylococcus aureus, Acinetobacter haemolyticus, Cryptococcus neoformans* and *Cryptococcus gattii strains* (MIC: 32 µg/ml).

Discussion

The marine environment hosts a huge number of organisms that produce unique secondary metabolites with wide range of bioactivity. Some of these metabolites are used in pharmaceutical and cosmeceutical industries. Eight marine-origin Table 3. Antioxidant activity of *M.vulgaris* and 5α - 6α - epoxyergosta 7-en- 3β - ol

		IC ₅₀ μg/ml ± SD	
Assay	5α- 6α- epoxyergosta 7-en- 3β- ol	M.vulgaris	Quercetin
SO	502.15± 0.22	332.2 ±0.11	11.2 ± 0.21
DPPH	498.1 ± 0.54	314.4 ± 0.81	8.23 ± 0.17
NO	519.9 ± 0.41	341.3 ± 0.52	13.8 ± 0.12

Table4. Antiproliferative effects of crude extract and 5α- 6α- epoxyergosta 7-en- 3β- ol against HTC-116 cell line

IC ₅₀ mg/ml ± SD		
5α- 6α- epoxyergosta 7-en- 3β- ol	>1	
Crude extract	0.724833 ± 0.0387	
Docetaxel	0.000206 ± 0.00012	

Table5. GC-MASS analysis results

	Stearic acid%	Palmitic acid%	Myristic acid%
Butanol fraction 1	9	50	11
Butanol fraction 2	12	45	19
Butanol fraction 3	8	40	18

Table 6. Antimicrobial activity of M. vulgaris

Strains	MIC (µg/ ml)	
Acinetobacter haemolyticus ATCC 19002	32	
Acinetobacter septicum NRB 239	128	
Klebsiella pneumoniae CDC 529	128	
Staphylococcus aureus JCSC 4744	32	
Staphylococcus epidermidis ATCC 35984	128	
Candida glabrata ATCC 90030	128	
Cryptococcus neoformans NIH 68	32	
Cryptococcus gattii NIH 112	32	

compounds in different phases of the clinical pipeline are approved by Food and Drug Admnistration (FDA) or European Medicines Agency (EMEA). From the eight compounds currently on the market (Adcetris®, Cytosar-U[®], Halaven[®], Yondelis[®], Carragelose[®], Vira A[®], Lovaza[®], Prialt[®]) only Prialt[®] , Yondelis[®] and Carragelose[®], have used the original natural molecule without any modification. Other compounds have lead optimization, in different steps of their development. Furthermore, the search for new source and new bioactive compounds are still ongoing (Martins et al., 2014). There are fifty tunicate species belonging to twelve families in Turkish seas. We collected M.vulgaris from İzmir, Agean Sea during our continuing research projects focusing on searching for new bioactive substances from marine organisms,.

According to the literature search there were only four studies of *M. vulgaris.* Sulcatin is the first pyridine alkaloid that was isolated from tunicates. A new antiproliferative alkaloid, n-methylprydinium was isolated from M. vulgaris (Aiello et al., 2000). In 2002 and 2003, sulcaceramit, a glicosphingolipid, and its perasetate form and three new glycosphingolipids were isolated from M.vulgaris (Aiello et al., 2002; 2003). In this research we isolated 5α - 6α - epoxyergosta 7-en- 3β ol methanolic extract of *M. vulgaris*. If we compare our results with previous studies, although we could not detect alkaloid in this species, we isolated and detected steroid and fatty acids respectively. This is first study about isolation and identification of Turkish tunicates. As a result of the antioxidant activity, crude extract has shown better radical scavenging activity and antiproliferative effect than the 5α - 6α - epoxyergosta 7en- 3β - ol. which may be the synergistic interactions of the compounds in the crude extract (Ulrich- Merzenich et al., 2010).

Antimicrobial activity of crude extract has shown significant activity against Gram positive, Gram negative and yeast strains. Furthermore, this is the first record about cytotoxic activity of *M.vulgaris* against colon cancer cells. As a result of GC-MASS analysis, stearic acid, palmitic acid and myristic acid were detected in Butanol fraction of *M.vulgaris*. Palmitic acid has high ratio in Butanol fractions (50%). Several reports have shown that tunicates are rich of steroids and fatty acids (Zlatanos *et al.,* 2009; Maoufoud *et al.,* 2009). The results of this study have been proven by the previous studies about tunicate contents.

In this study, 5α - 6α - epoxyergosta 7-en- 3β - ol was isolated and three fatty acids were detected from *M.vulgaris*. Antioxidant and antiproliferative activities of crude extract and isolated compound were investigated, furthermore antimicrobial activity of crude extract was determined. There are so many tunicate species with secondary metabolites contents and bioactivities that await to be analyzed. Despite the large number of species, it is likely that new substances will be obtained in future studies. To the best of our knowledge, totally 50 tunicate species were detected in Turkey, among them *M. vulgaris* is the first and only species that was analyzed for secondary metabolites and bioactivities.

Acknowledgment

This study supported by the project number 113Z837 and named as 'Chemical and Ecological Study of Some Turkish Coasts Benthic Invertebrates' by The Scientific And Technological Research Council Of Turkey (TÜBITAK).

References

- Aiello, A., Fattorusso, E., Mangoni, A., & Menna, M. (2002). Sulcaceramide, a Novel Triglycosylceramide from the Marine Ascidian *Microcosmus sulcatus*. *European Journal of Organic Chemistry*, 2(31),1047–50. https://doi.org/10.1002/1099-
- 0690(200203)2002:6<1047::AID-EJOC1047>3.0.CO;2-2 Aiello, A., Fattorusso, E., Mangoni, A., & Menna, M. (2003). Three New 2, 3-Dihydroxy Fatty Acid Glycosphingolipids from the Mediterranean Tunicate Microcosmus sulcatus. *European Journal of Organic Chemistry*, 734–
- 739. https://doi.org/10.1002/ejoc.200390114
 Aiello, A., Fattorusso, E., Menna, & Iuvone, M. (2000). Sulcatin,
 a Novel Antiproliferative N -Methylpyridinium Alkaloid
 from the Ascidian Microcosmus vulgaris. Journal of
 Natural Product, 63(4), 517–519.
- Chun, H.G., Davies, B., Hoth, D., Suffness, M., Plowman, J., Flora, K., Grieshaber, C., & Didemnin, B. (1986).The first marine compound entering clinical trials as an antineoplastic agent. *Investigational New Drugs*, 4(3),279–84.
- Cooper, E.L., & Yao, D. (1988). Diving for drugs : tunicate anticancer compounds. *Drug Discovery Today*, 17(11-12),636–48.

https://doi.org/10.1016/j.drudis.2012.02.006

Çinar, M.E. (2014). Checklist of the phyla Platyhelminthes , Xenacoelomorpha , Nematoda , and Hemichordata) from the coasts of Turkey. *Turkish Journal of Zoology*, 38, 698-722. https://doi.org/38:698–722. 10.3906/zoo-1405-70

- Edler, M.C., Fernandez, A.M., Lassota, P., Ireland, C.M., & Barrows L.R. (2002). Inhibition of tubulin polymerization by vitilevuamide, a bicyclic marine peptide, at a site distinct from colchicine, the vinca alkaloids, and dolastatin 10. *Biochemical Pharmacology*, 63(4),707–15. https://doi.org/10.1016/S0006-2952(01)00898-X
- Fojo, A.T. (2008). The Role of Microtubules in Cell Biology, Neurobiology, and Oncology. Human press.New York, USA, 249 pp.
- Harput, U.S., Genç, Y., Khan, N. & Saracoglu, I. (2011). Radical Scavenging Effects of Different Veronica Species. *Records of Natural Products*. 5(2),100-107.
- Kijjoa, A., & Sawangwong, P. (2004). Drugs and Cosmetics from the Sea. Marine Drugs, 2(2): 73–82.
- Kim, S.K. (2012). Marine Pharmacognosy: Trends and Applications. CRC Press, New York, 251 pp.
- Kobayashi, J., Cheng, J., Nakamura, H., & Ohizumi, Y. (1988). Ascididemin, a novel pentacyclic aromatic alkaloid with potent antileukemic activity from the okinawan tunicate Didemnum sp. *Tetrahedron Letter*, 29(10):1177–80. https://doi.org/10.1016/S0040-4039(00)86681-2.
- Konuklugil B. (2016). Secondary Metabolites from Marine Sources: Review. *Journal of Literature Pharmacy Sciences*. 5(2),110–7. https://doi.org/10.5336/pharmsci.2016-50608
- Maoufoud, S., Abdelmjid, A., Charrouf, M., & Bennamara, A. (2009). Chemical composition of fatty acids and sterols from tunicates cynthia Savignyi, Cynthia Squamulata and from the brown alga cystoseira tamariscifolia. *Physical and Chemical News*, 47, 115-119.
- Martins, A., Vieira, H., Gaspar, H., & Santos, S. (2014). Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success. *Marine Drugs*, 12(2):1066–101. https://doi.org/10.3390/md12021066
- Mehbub, M.F., Lei, J., Franco, C., & Zhang, W. (2014). Marine Sponge Derived Natural Products between 2001 and 2010: Trends and Opportunities for Discovery of Bioactives. *Marine Drugs*, 12(8),4539–77. https://doi.org/10.3390/md12084539
- Menna, M., & Aiello A. (2012). The Chemistry of Marine Tunicates. Springer press. USA. 296–365pp.
- Martins A., Vieira H., Gaspar H., & Santos S. (2014). Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success. *Marine Drugs*, 12, 1066-1101. doi:10.3390/md12021066
- Patel, RM. (2011). Trabectedin : A novel molecular therapeutic in cancer. *International Journal of Current Pharmaceutical Research*, 3(3),65–70.
- Raslan, A.E., Radwan, M., Ahmet, S.A., Nafady A.M., Wanas, A., Tekwani, B., Hassanean, H.A., & Elsohly M.A. (2017).
 Evaluation of Secondary Metabolites from the Red Sea Tunicate Polyclinum Constellatum. *Pharmacy & Pharmacology International Journal*, 5(3), 123-129. https://doi.org/10.15406/ppij.2017.05.00123
- Schmidt, E.W., Donia, M.S., McIntosh, J.A., Fricke, W.F., & Ravel, J. (2012). Origin and Variation of Tunicate Secondary Metabolites. *Journal of Natural Product*, 75 (2), 295–304. https://doi.org/10.1021/np200665k
- Senthil Kumar, R., Rajkapoor, B., & Perumal, P. (2012). Antioxidant activities of Indigofera cassioides Rottl. Ex. DC. using various in vitro assay models. Asian Pac. J. Trop. Biomed. 2(4): 256–261.

- Shirwaikar, A., Shirwaikar, A., Rajendran, K., & Punitha, I.S. (2006). In vitro antioxidant studies on the benzyl tetra isoquinoline alkaloid berberin. *Biological and Pharmaceutical Bulletin*, 29(9):1906-1910. https://doi.org/10.1248/bpb.29.1906
- Ulrich-Merzenich, G., Panek, D., Zeitler, H., Vetter, H., & Wagner, H. (2010). Drug development from natural products: exploiting synergistic effects. *Indian Journal of Experimental Biology*, 48(3),208-19.
- Zlatanos, S., Laskaridis, K., & Sagredos A. (2009). Determination of proximate composition, fatty acid content and amino acid profile of five lesser-common sea organisms from the Mediterranean Sea. International Journal of Food Science and Technology, 44(8), 1590-1594. https://doi.org/10.1111/j.1365-2621.2008.01870.x